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Exercises on Ch.13 Transformations at constant 
composition 

13.1 The phase field rule at constant composition. Exercise 1 

13.2 Reaction coefficients in sharp transformations for p = c + 1. Exercise 1 

13.7 Reaction coefficients at a constant chemical potential. Exercise 1 

13.8 Compositional degeneracies for p = c. Exercises 1, 2, 3, 4, 5, 6 and 7 

13.9 Effect of two compositional degeneracies for p = c – 1. Exercises 1, 2, 3 and 4 

 

13.1 The phase field rule at constant composition 

Exercise 13.1.1 

In Section 10.6 we derived Duhem's theorem which says that the state of a closed system 
is uniquely defined by choosing values for T and P. That seems to be in agreement with 
the present result for p ≤ c which is d = 2, i.e. T and P. However, how can it be reconciled 
with the result for p > c yielding d = c + 2 − p < 2, i.e. only one of T and P or none of 
them? 

Solution 

For constant composition, where ms nn = , we have pcd −+= 2  and for a system with 
 we get 1+= cp 112 =+−+= ccd . The phase field is thus one-dimensional and we can 

choose the value of T or P but not of both if one wants to stay within the phase field. 
However, Duhem’s theorem does not concern a certain phase field. It only requires that 
one has chosen the composition. By varying T and P independently one may thus move 
from one phase filed into another but for each combination of T and P Duhem’s theorem 
says that there is always a particular state. Its number of phases, p, may be anything from 
1 to . Higher values are forbidden by Gibbs’phase rule.  2+c

13.2 Reaction coefficients in sharp transformations for p = c + 1 

Exercise 13.2.1 
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Prove that  for the case p = c + 1, when the molar contents x0=Σ jν i are inserted as ai in 
the expression for . jν

Solution 

0...1......... 212121 ==+−=Σ εγβεγαεγβν ccc
j xxxxxxxxx  since ∑ =

i

j
ix 1. The result simply 

means that the number of moles of atoms does not change by the reaction. 

13.7 Reaction coefficients at a constant chemical potential 

Exercise 13.7.1 

When an Fe–Mo alloy is carburized at 1273 K, it may transform by a eutectoid 
transformation α → γ + M6C. The ideal composition of the initial Fe–Mo alloy for this 
transformation is defined by the α corner of the α + γ + M6C triangle. Consider such an 
alloy but try to find a construction showing that it could transform to pure γ if the carbon 
activity is high enough. Use the enlarged detail of the phase diagram at 1273 K. Estimate 
that critical value of the carbon activity. 

 

Hint 

First try to find how one can evaluate the fractions of γ and M6C if the transformation is 
caused by a very small driving force. Then investigate what happens to the fraction of 
M6C if the driving force is higher. 

Solution 

The fraction of M6C is proportional to αγγγα
MoMoMoMoFe uuuuu −== 1 . It will go to zero if 

 approaches . The construction in the diagram shows that this will happen at a 
value of approximately 

γ
Mou α

Mou
065.0006.0/0095.0041.0 =⋅≅Ca  if the carbon activity is 

proportional to the carbon content of γ and independent of the Mo content. The dashed 
line is an extrapolation of γ/α. 
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13.8 Compositional degeneracies for p = c 

Exercise 13.8.1 

In Exercise 13.11 we solved a computational problem caused by a degeneracy by adding 
an extra phase. Use Eq. 13.35 to discuss an alternative solution. 

Solution 

We get the same effect on the variance v in Gibbs’ phase rule when decreasing c by  
as when increasing p by . In order to decrease c by 

cdn

cdn 1=cdn  we could choose  
and  as the new set of components. Whether one should let  affect the 
number of phases or components depends on the structure of the computer software to be 
used.  

2SiO

32OAl 0>cdn

Exercise 13.8.2 

Check if Al2O3 + Si3N4 = SiO2 + AIN can be a sharp transformation (neglecting the 
possible formation of intermediary phases). If so, evaluate the reaction coefficients. 

Hint 

Normally we can expect a sharp transformation when varying T under constant P and 
composition for a system with  p = c+1. Here we have p = c aand need a compositional 
degeneracy in order to obtain a sharp transformation. We should thus test the complete 
determinant.  

Solution 
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  Al  O  Si   N 

  

AlN
SiO

NSi
OAl

2

43

32

0

1001
0120
4300
0032

=  

We thus have a degeneracy and can get a sharp transformation. In order to evaluate the 
reaction coefficients we should add an additional phase, e.g. pure Al. The composition 
matrix will then be 

  Al   O  Si   N 

  

1

2

43

32

+c
AlN
SiO

NSi
OAl

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0001
1001
0120
4300
0032

and we obtain the reaction coefficients as 

6
100
012
430

0001
1001
0120
4300

32 +=−=+=OAlν  

3
100
012
003

0001
1001
0120
0032

43 +=+=−=NSiν  

9
100
430
003

0001
1001
4300
0032

2 −=−=+=SiOν  

12
012
430
003

0001
0120
4300
0032

−=−=+=AlNν  
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We may give the arbitrary constant a value of 1/3 and obtain the coefficients + 2, + 1, − 3 
and − 4 and the reaction formula will thus be 2Al2O3 + Si3N4 = 3SiO2 + 4AlN. 

Exercise 13.8.3 

Consider the reaction NH3(gas) + HCl(gas) → NH4Cl(solid). It is trivial to find the 
reaction coefficients but, nevertheless, show how they can be calculated with the method 
presented in this Section. 

Hint 

So far we have considered reactions between phases. Since we are now interested only in 
the amounts of each species taking part in the reaction, we may treat NH3 and HCl as 
different phases although in reality there is only one gas phase. Then we have p = c = 3. 

Solution 

The reaction would correspond to a sharp transformation if there is one compositional 
degeneracy. This is confirmed because the composition determinant gives 

      N  H  Cl 

   
ClNH

HCl
NH

4

3

0
141
110
031
=  

In calculating the reaction coefficients let us omit the second column in order to simplify 
the calculations as much as possible. Then, 

;1
11
10

3 −==NHν   ;1
11
01

−=−=HClν   1
10
01

4 ==ClNHν  

Exercise 13.8.4 

In Exercise 13.2 we considered the variance of the equilibrium CaCO3 ↔ CaO + CO2 in 
an N2 atmosphere. Now, discuss the same transformation without N2 present and consider 
the dimensionality of a phase field. That dimensionality has been given by Eqs. 8.23 and 
10.5 and applied in Eq. 13.4. However, considering the effect of degeneracies, expressed 
by Eq. 13.35, we should now write cdms nnnpcd −+−−+= 2  where  is the number 
of degeneracies. For constant P and composition we get 

cdn

cdnpcd −−+= 1 . 

Hint 

In the present case we have p = 3 and c = 3 and may normally expect d = c + 2 – p – ns + 
nm where  and  if we keep P and composition constant, i.e., 1+= cns cnm =
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11 =−+= pcd  in the present case. However, we should check if there is a 
compositional degeneracy.  

Solution 

The composition determinant yields 

    Ca  C   O 

  

2

3

CO
CaO

CaCO
0213

210
101
311

=−−=  

There is thus one compositional degeneracy and the dimensionality of h phase field will 
be d = c + 1 – p – ncd = 3 + 1 – 3 – 1 = 1. We thus have a sharp phase transformation at 
any chosen value of P. 

Exercise 13.8.5 

Discuss the variance of the equilibrium between pure water, H2O, and a gas composed of 
H2O, H2 and O2 molecules in a system of constant composition. 

Hint 

We have p = 2 and c = 2 (H and O) and may thus have expected that d = c + 2 – p = 2 + 2 
– 2 = 2. However, we should check if there is a compositional degeneracy. 

Solution 

The above expectation is justified if the composition is defined by starting with arbitrary 
amounts of H2O, H2 and O2. On the other hand, if we start with pure water, H2O, then the 
gas will have the same composition even if it dissociates into a mixture of H2O, H2 and O2 
molecules. In that case we have a composition determinant with two identical rows. 
There is thus a compositional degeneracy and we get d = c + 2 – p – ncd = 2 + 2 – 2 – 1 = 
1. At constant P the equilibrium can be established at a single temperature, only, and by 
changing the temperature gradually through this value we will get a sharp phase 
transformation. (Here we have neglected the solubilities of H2 and O2 in water which are 
very low but, in principle, give the two phases slightly different compositions if we start 
from only water. Thus, d = 2.) 

Exercise 13.8.6 

Pure Zn is produced from ZnO by reduction with C under the formation of CO and CO2. 
Examine the variance of the equilibrium between these phases. 

Hint 
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The temperature is high and Zn evaporates. There are three phases, gas, solid ZnO and 
solid C, and three components, Zn, O and C. We may thus expect that d = c + 2 – p = 3 + 
2 – 3 = 2 but should check if there is a compositional degeneracy. 

Solution 

If we start from ZnO and C and no gas, then gas must form from ZnO and C and its 
composition must fall on the straight line between ZnO and C in the composition triangle. 
Thus, there is a compositional degeneracy. Mathematically, we may show this by 
considering x formula units of the reaction 2ZnO + C → CO2 + Zn and y formula units of 
ZnO + C → CO + Zn. The gas will thus contain x + y moles of C, 2x + y moles of O and 
2x + y moles of Zn. The composition determinant is obtained as 

    C          O          Zn 

  
gas
ZnO

C
0

22
110
001

=
+++ yxyxyx

 

Thus, there is one compositional degeneracy and we get d = c + 2 – p – ncd = 3 + 2 – 3 – 1 
= 1. At constant P the three phases can be present at a single T, only. At any given T, the 
transformation will continue until a certain P value has been reached. On the other hand, 
if one starts to remove Zn from the gas by condensation, the degeneracy is relaxed and 
the variance will be d = 2. 

Exercise 13.8.7 

Suppose we have a computer program for the calculation of phase equilibria. When 
trying to calculate the equilibrium temperature at a pressure of 1 bar for four phases in a 
ternary system, we get the message, “cannot calculate because d ≠ 0”. What action could 
we take? 

Hint 

Evidently, the program is constructed to calculate sharp phase transformations. We have 
p = 4 and c = 3 and thus p = c + 1 and we thus expected a sharp transformation and ti be 
able to perform the calculation. However, the message indicates that there is some kind of 
compositional degeneracy. Let us accept this as a fact.  

Solution 

If there is one degeneracy, ncd = 1, we have d = c + 2 – p – ncd = 3 + 2 – 4 – 1 = 0 and at 
constant P we have d = – 1. This may thus be a case of overlapping transformations. We 
should simply relax the condition P = 1 bar and can expect to calculate T as well as P. 
Then we could introduce a constant P equal to that value and calculate the reaction 
coefficients for any transformation involving three of the phases. 
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13.9 Effect of two compositional degeneracies for p = c – 1 

Exercise 13.9.1 

On heating solid NH4Cl it will evaporate to gaseous NH3 and HCl. Examine if this will 
happen at a particular T if P is kept at 1 bar or if it will happen over a range of T. 

Hint 

There can be only one gas phase and even though it has three components, N, H and Cl, it 
is evident that its composition cannot vary at all. It must have the same composition as 
the initial solid phase from which it is formed. We may thus conclude that the whole 
system behaves as if there is only one component, NH4Cl. Justify this conclusion by 
using the method derived in this section. 

Solution 

We have the case p = 2 and c = 3 and thus p = c – 1 but both phases have the composition 
NH4Cl and the composition matrix will thus be 

 N  H  Cl 

  
gas

solid
⎥
⎦

⎤
⎢
⎣

⎡
141
141

By omitting one column at a time we find 0
41
41
=  and 0

11
11
=  

and there are thus two compositional degeneracies. The transformation solid → gas will 
thus be sharp at any chosen P value. It will then occur at a particular T. 

Exercise 13.9.2 

Discuss the variance of the equilibrium between the three solid phases NH4Cl, K2CO3, 
(NH4)2CO3, and a liquid phase formed from them by melting. 

Hint 

We have p = 4 and c = 6 (N, H, Cl, K, C, and O) and may thus expect the value for p < c, 
i.e. d = 2. However, we should check on compositional degeneracies. In order to get the 
result d = 1 we need 1 = c + 2 – p – ncd = 6 + 2 – 4 – ncd = 4 – ncd; ncd = 3, i.e. we need 
three compositional degeneracies. This is tested directly by studying the composition 
matrix. Notice that the liquid phase is not stoichiometric but due to the condition of 
electroneutrality we may represent its composition with (NH4)xKyClz(CO3)(x+y-z)/2. 

Solution 
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The composition matrix is 

  N    H   Cl   K             C                      O 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−+−+ 2/)(32/)(4
310082
312000
000141

zyxzyxyzxx

It can be shown that all the determinants obtained by omitting any two columns are zero. 
Thus there are three compositional degeneracies and d = c + 2 – p – ncd = 6 + 2 – 4 – 3 = 
1. This is a sharp transformation at any chosen value of P. 

Exercise 13.9.3 

Consider the equilibrium between four phases in the A–B–C–D system. The molar 
contents of B, C and D are for each phase (0.20;0.20;0.40), (0.15;0.10;.0.25), 
(0.14;0.08;0.22) and (0.13;0.06;0.19). 

Hint 

The phase field rule for constant composition yields d = c + 2 – p = 4 + 2 – 4 = 2. 
However, we should test for compositional degeneracies. 

Solution 

The composition matrix is 

    A         B        C        D 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

19.006.013.062.0
22.008.014.056.0
25.010.015.050.0
40.020.020.020.0

The complete determinant is zero, but we do not need to take the trouble to show this if 
we suspect that there is another compositional degeneracy. Then the whole test can be 
done on minor determinants, obtained by omitting one row and then one column at a 
time. We get, for instance, 

0
22.008.014.0
25.010.015.0
40.020.020.0

=  and 0
06.013.062.0
10.015.050.0
20.020.020.0

=   
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There are thus two compositional degeneracies and d = c + 2 – p – ncd = 4 + 2 – 4 – 2 = 0 
and at a constant P we have d = – 1. We would thus have of overlapping sharp 
transformations if we vary T. Normally that could occur when 2+= cp . Here it can 
occur for  because there are two compositional degeneracies.  cp =

Exercise 13.9.4 

Consider the equilibrium NaCl + ice + water + vapour. 

Hint 

There are four phases and four components and we could thus expect d = c + 2 – p = 4 + 
2 – 4 = 2. However, we should check for compositional degeneracies. Water dissolves 
much NaCl, ice dissolves some but very little and there is practically no NaCl in the 
vapour. We may give the composition of the water as xNa = xCl = y; xo = xH/2 = (1 – 2y)/3 
and of ice in a similar way. 

Solution 

The composition determinant is zero because two columns are identical, 

    Na  Cl           H                  O 

  

vapour
water

ice
Na

0

1200
3/)21(3/)21(2
3/)21(3/)21(2

0011

=
−−
−−

yyyy
zzzz

 

This proves that there is at least one compositional degeneracy. We can test if there is 
another one by omitting one row and one column. We get, for instance, 

0
12

3/)21(3/)21(2

120
3/)21(23/)21(2

001
=

−−
=−−

zz
zzz  

Thus there are two compositional degeneracies and the phase field rule yields d = c + 2 – 
p – ncd = 4 + 2 – 4 – 2 = 0 and for constant P we get d = – 1. This is a case of overlapping 
transformations. 
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	Solution
	We have the case p = 2 and c = 3 and thus p = c – 1 but both phases have the composition NH4Cl and the composition matrix will thus be
	 N  H  Cl    
	By omitting one column at a time we find   and   and there are thus two compositional degeneracies. The transformation solid → gas will thus be sharp at any chosen P value. It will then occur at a particular T.
	Exercise 13.9.2
	Discuss the variance of the equilibrium between the three solid phases NH4Cl, K2CO3, (NH4)2CO3, and a liquid phase formed from them by melting.
	Hint
	We have p = 4 and c = 6 (N, H, Cl, K, C, and O) and may thus expect the value for p < c, i.e. d = 2. However, we should check on compositional degeneracies. In order to get the result d = 1 we need 1 = c + 2 – p – ncd = 6 + 2 – 4 – ncd = 4 – ncd; ncd = 3, i.e. we need three compositional degeneracies. This is tested directly by studying the composition matrix. Notice that the liquid phase is not stoichiometric but due to the condition of electroneutrality we may represent its composition with (NH4)xKyClz(CO3)(x+y-z)/2.
	Solution
	The composition matrix is
	  N    H   Cl   K             C                      O  
	It can be shown that all the determinants obtained by omitting any two columns are zero. Thus there are three compositional degeneracies and d = c + 2 – p – ncd = 6 + 2 – 4 – 3 = 1. This is a sharp transformation at any chosen value of P.
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	The phase field rule for constant composition yields d = c + 2 – p = 4 + 2 – 4 = 2. However, we should test for compositional degeneracies.
	Solution
	The composition matrix is
	    A         B        C        D  
	The complete determinant is zero, but we do not need to take the trouble to show this if we suspect that there is another compositional degeneracy. Then the whole test can be done on minor determinants, obtained by omitting one row and then one column at a time. We get, for instance,
	  and   
	There are thus two compositional degeneracies and d = c + 2 – p – ncd = 4 + 2 – 4 – 2 = 0 and at a constant P we have d = – 1. We would thus have of overlapping sharp transformations if we vary T. Normally that could occur when  . Here it can occur for   because there are two compositional degeneracies. 
	Exercise 13.9.4
	Consider the equilibrium NaCl + ice + water + vapour.
	Hint
	There are four phases and four components and we could thus expect d = c + 2 – p = 4 + 2 – 4 = 2. However, we should check for compositional degeneracies. Water dissolves much NaCl, ice dissolves some but very little and there is practically no NaCl in the vapour. We may give the composition of the water as xNa = xCl = y; xo = xH/2 = (1 – 2y)/3 and of ice in a similar way.
	Solution
	The composition determinant is zero because two columns are identical,
	    Na  Cl           H                  O     
	This proves that there is at least one compositional degeneracy. We can test if there is another one by omitting one row and one column. We get, for instance,
	 
	Thus there are two compositional degeneracies and the phase field rule yields d = c + 2 – p – ncd = 4 + 2 – 4 – 2 = 0 and for constant P we get d = – 1. This is a case of overlapping transformations.

