Exercises on Ch.20 Mathematical modelling of solution
phases

20.4 Empirical approach to substitutional solutions. Exercises 1, 2 and 3

20.5 Real solutions. Exercise 1

20.6 Applications of the Gibbs—Duhem relation. Exercises 1, 2 and 3

20.7 Dilute solution approximations. Exercises 1 and 2

20.8 Predictions for solutions in higher-order system. Exercise 1

20.9 Numerical methods of predictions for higher-order systems. Exercises 1 and 2

20.4 Empirical approach to substitutional solutions

Exercise 20.4.1

It has been suggested that the temperature dependence of the regular solution parameter L
should be described with 4 + B/T instead of a + bT because the latter expression may
make L change sign at some high temperature which is claimed to be unrealistic. Of
course, the same objection can be raised against the new suggestion because it may
change sign at some low temperature. Anyway, accept the new suggestion and evaluate
the enthalpy and entropy parts of L.

Hint

Write L=L, - L.T.

Solution

By definition L, = — 0L/0T = B/T* and L, = o(L/T)/0(1/T) = A + 2B/T.

Exercise 20.4.2

The Fe—Cr phase diagram has a two-phase region y(fcc) + a(bec) which cannot be
described by applying the thermodynamics for dilute solutions because it has a minimum



(at about 1123 K). Try to explain this behavior with the regular solution model. At the
same time evaluate the 'lattice stability' of fcc-Cr as a function linear in 7, i.e.

°Gl -°G. =a+bT . The quantity °GJ, —° G, is known and is tabulated here together

with information on the y + a region. The tabulated compositions are taken in the middle
of y + a where one may assume that y and a have the same Gibbs energy.

1K) x2 °G7,—°G2 (J/ mol)
1170 0.012 10.54
1170 0.121 10.54
1600 0.057 ~30.12

Hint

From the table we get three conditions through G = G/ . Two parameters are already
defined, a and b. Let the third one be L" — L°.

Solution

For each phase G, =x,, °G,, +x. Gy —TS"" +x,.x.,L. At x% =x/ =x. where
G, =G! we have 0=x,,(°G,—°Gr)+x. ("GL =G ) + x7,x0, (L7 —L%). The data in

the table will give:

0.988:10.54 + 0.012(a + 1170b) + 0.988-0.012(L" — L*) = 0;
0.879-10.54 + 0.121(a + 1170b) + 0.879-0.121(L" — L*) = 0;
0.943-( - 30.12) + 0.057(a + 1600b) + 0.943-0.057(L' — L*) = 0;.

We find °G/, -°G¢, =a+bT =3476+2.417T(J / mol); L — L (J / mol) .

Exercise 20.4.3

For a binary solution with a constant positive L in G,, = x,°G, + x5°Gy + RT(x,Inx, +
xglnxg) + Lx,x;s there will be a symmetric miscibility gap. Show that close to the critical

point the width of the gap is /3 times the width of the spinodal curve according to our
model.

Hint

We have seen that the spinodal curve for a symmetric system is described by x,x; =
T/AT., = RT/2L. Let Ax be the width of the spinodal. For symmetry reasons

x, =(1-Ax)/2;x, =(1+Ax)/2 and Ax can be expressed in terms of (T, — T)/Tu.
Derive a similar equation for the binodal curve using the condition that dG,/dx, should



have the same value for the phases in equilibrium, i.e. for x, =(1—Ax)/2 and for
x, = (1+Ax)/2 . Then introduce the approximation In(1 + Ax) = Ax — Ax*/2 + Ax*/3.

Solution

Spinodal: 7/T.; = 4(1 + Ax)(1 — Ax)/4 =1 — Ax*; A’ = (T — T)/ T

Binodal: dG,/dx; = — °G, +°Gy + RTIn(xy/x,) + L(xs — x3) should have the same value on
both sides: RTIn[(1 — Ax)/(1 + Ax)] + L(1 + Ax — 1 + Ax)/2 = RTIn[(1 + Ax)/(1 — Ax)] +
L(1 — Ax — 1 — Ax)/2. This gives RT( — Ax + Ax*/2 — Ax*/3 — Ax — Ax*/2 — AX*/3) + LAx =
RT(Ax — AX*/2 + AX*/3 + Ax + Ax*/2 + Ax*/3) — LAx and 1 + Ax*/3=L/2RT =T, JT;, Ax’ =
(Tl T) =11 = 3(Tose — TVT = 3(Tesic — 1)/ T

20.5 Real solutions

Exercise 20.5.1

Show that for a multicomponent solution dlnf/0x; — Xx,0lnf/0x, = Olnf/0x; — Xx,Olnf/Ox,.
Hint

From Exercise 20.3 we know that 0°G,/ON; = 0"G/ON; and thus Olnf;/ON, = Olnf/ON;. Now
consider Inf; and Inf; as functions of x;, etc., and remember that ox,/0N, = (1 —x;)/N and
Ox;/ON, = — x/N.

Solution

olnf, /N, =@ f,/x,)-(1—x)/ N+ (@n f,/ox,)-(1-x,)/ N =(@In [,/ &x,

ki

—Xx0ln f;/0x,)/N; 0ln f;/ON,; =(0In f,/0x, —Zx,0In f,/&x, )/ N . The two right-

hand sides must be equal because the two left-hand sides are.

20.6 Applications of the Gibbs—Duhem relation
Exercise 20.6.1

The diagram shows experimental values of a,, in A1-Ag alloys, represented through the
quantity In £, /x’, . Accept that he solid line represents a reasonable curve across the

whole system. Both Al and Ag are fcc and one can imagine a gradual change of this
phase from pure Al to pure Ag provided that the { phase can be prevented. A
corresponding curve (dashed line) has been drawn tentatively but obeying the rule that
the two shaded areas must be equal. Prove that rule.
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Hint

Imagine that *G,, for an alloy with a low value of x,, is calculated from Inf,, by
integration from pure Ag, following two different routes in the middle of the system.

Solution

G, |RT = XpeInf,, +x,Inf, =x, [(nf, /xjg)dxA,. The integral represents the

area under the curve one follows on integration. The difference between the two shaded
areas represents the difference in integrated area if we follow the two different paths. In

order to yield the same result after crossing the two-phase field, the two shaded areas
must be equal.

Exercise 20.6.2

Derive Raoult's law from Henry's law for a binary solution. Then examine if one can go
the other way.

Hint
We assume that f, is constant and thus dlnf,/dx, = 0 from x, = 0 up to some small value.

Solution

When calculating In f, by integration of Eq. 20.46 we find that the integrand is zero. Thus
In f,=0and f, = 1 in agreement with Raoult's law. On the other hand, if we start with
Raoult's law, f, = 1, then dInf,/dx, = 0 but when calculating In f, by integration we now
find that the integrand is indeterminate, (dInf,/dx,)/x, = 0/0. It is not possible to predict
the slope of the line representing Henry's law.

Exercise 20.6.3



Show that for a binary solution phase

,ding, _dnf, _din(f,/f,)_ -1 d**G,

d(x3) T d(x) dc,  RT dx

Hint

Take the derivative of "G,, = x,"G, + x5" G remembering x, + x; = 1 and using
EG_/. =RTIn f, from Eq. 7.16.

Solution

d*G,/dx, =G, — "G = RTIn(f,/f3) since Zx;d"G; = 0. Thus we get, by again using the
Gibbs-Duhem relation, (=1/RT)-d**G, /dx’ =—-dIn(f,/ f,)/dx,
=—(dInf,-dinf,)/dx,=—{dInf,+(x,/xz)dInf,]/dx, =—(1/x,)dInf,/dx,
=2dInf,/d(x}).

20.7 Dilute solution approximations

Exercise 20.7.1

In the ¢ formalism we may define ¢, as 0°G, /dx.and &2 as 0°G,. /dx,. Examine a

ternary system. Under what conditions would we have ¢ =&.?
Hint

First apply the Gibbs—Duhem relation for excess quantities to variations in x; and take the
derivative with respect to x.. Then do it the other way and compare the results. Notice
that x, must be replaced by 1 — x; — xc.

Solution

Gibbs—Duhem in this form (1 — x — xc)0"G/Oxg + x50°G/Ox; + x0°G/Oxs = 0 would give
us (1 — x5 — x)0 G a/Ox50xc — 0"G o/ Oxy + X507 Gy/Ox0Oxc + 0"G/Oxy + X0 G/ OxOx = 0.
Gibbs—Duhem in this form (1 — x — xc)0"G/0xc + x50°Gy/Oxc + x0°G/Ox. = 0 would give
us (1 — x5 — x)0 G A/OXOx5 — 0"Gr/OXc + X507 Gy/OxOx + 0"Gy/Oxc + x:0"G/OxOx = 0.
From the difference we obtain 0(*G. — *G,)/0xs = 0("Gy — "G,)Ox. It is thus necessary to
have 0°G,/0Oxz = 0"G./Oxc. This is fulfilled in the € formalism because these derivatives
are both zero. It is not fulfilled in the quadratic formalism. We may conclude that

¢y =&, holds for dilute solutions only.

Exercise 20.7.2



Show for a ternary system under what conditions RT¢; = g .., which is a notation for
0°G,,/OxpOxc.

Hint

From the definition of &5 we have RTe; = 0G, /dx. which can be calculated from Gy =
G, + (1 — x3)0G,/0x; — x.0G./Ox. where G, is regarded as a function of x; and x..

Solution

RTeS =0G, /ox,. =0G, |ox. +(1—x,)0°G, /0x,0x. —0G, | 0x. —x.0°G, | ox}
=0’G, /0x,0x, —x,0°G, | 0x,0x. —x.0°G, /ox.. The second term may be neglected

at small x; but for convenience we shall keep the part which comes from the ideal entropy
of mixing, RTxy/x,. The third term may be approximated by the part coming from the

ideal entropy of mixing RTxc(1/x, + 1/xc). We obtain RTe; =0G, /0x,0x. — RT/x,,.

The last term is approximately — RT and it can be neglected only when ‘gﬂ >>1.

20.8 Predictions for solutions in higher-order system
Exercise 20.8.1

Suppose the properties of a certain solution phase are known in the binary systems A—B,
B-C and C-A. When the ternary parameter /,,c was evaluated from some ternary
information one found that it was practically zero. In that assessment one described the
binary A—B properties with an expression x,xs(’Ls + 'Lsxs). Suppose that the assessment
is repeated using an expression x,xz(°L, + 'L,x,). What value would one then obtain for
the ternary parameter?

Hint

We must suppose that the two binary expressions are identical in the binary case, °L; +
'Lo(1 —x) =L, + 'Laxs. Thus,’Ly =Ly + 'Ly and 'L, = — 'Ly,

Solution

Omit all terms from B—C and C—A because they are the same in both cases. The result of
the second assessment is written in the form:

XpXp("La + 'Lpxy) + xaXeXclase- By the use of xz = 1 — x, — xc, transform the result of the first
assessment to this form: xpxs(°Lg + 'Lpxs) = xaX5("Ls + 'Lg — 'Lgxc) = xaXs("Lg + 'Ls — 'Lyx,)
a+t x,xpXc( — 'Lg). Comparison gives °L, =Ly + 'Ly and 'L, = — 'Ly which we knew before
but we also find [,ze = — 'Lg

20.9 Numerical methods of predictions for higher-order systems



Exercise 20.9.1

Prove that Muggianu's method for a ternary system correctly reproduces a term written in
the form x,x,(x, — x j)k -kL,.j in the binary ij system.

Hint

Start by evaluating the value of “G” for the binary alloy used in the method. Then
multiply by the weight recommended by Muggianu.
Solution

X" =(+x,—x,)/ 2% = (1=x, +x,)/ 255G = (1+x, —x,)/2-(1-x, +x,)/2
! ! J J ! J m t J ! J
k k kky .
A+x, —x;, —1+x,—x,)/2]""L; =1/4) - (I1+x, —x ) )A—x, +x,) - (x, =x,)" " L;;

4x,x
‘G, :Z(n . L(1/4)-(1+x, = x,)(1=x, +x,)(x, —x,)" L,
k k
=2x,x; (x; —x;) Ly

X, =x)(=x, +x;)

Exercise 20.9.2

The excess Gibbs energy for a binary system is represented with the following expression
according to the subregular solution model, "G,, = x,x5[’Las + 'Las(xs — Xx5)]. Suppose this
expression is included in the Gibbs energy for a ternary A—B—C system. Derive
expressions for the corresponding contributions to the partial Gibbs energies for A and C,
respectively.

Hint

Use "G; = "G, + 0G,/0x; — 2x,0G,/0Ox;. Note that x; = 1 — x, cannot be used in the ternary
system.

Solution

E~ _0 1 2 2 2
G, =L (x,xp+x, =X, X5 =XpX )+ L, (XX —X,Xp+2X,Xp —Xp =X, 2X,X,
2 2 _0 1 2 2 2 2 2
+ XXy = XX+ X5 2X %)= LyxXg (L= x )+ L (XX — X X5 —2X,X, + XX — XX,

+ 2XAX§ ):OLAB (=x x5 )+1Lg/‘ [2x x5 (x4 —Xx5)] = —x X, [OLAB + 2'1LAB (x,—x3)].
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