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Exercises on Ch.20 Mathematical modelling of solution 
phases 

20.4 Empirical approach to substitutional solutions. Exercises 1, 2 and 3 

20.5 Real solutions. Exercise 1 

20.6 Applications of the Gibbs–Duhem relation. Exercises 1, 2 and 3 

20.7 Dilute solution approximations. Exercises 1 and 2 

20.8 Predictions for solutions in higher-order system. Exercise 1 

20.9 Numerical methods of predictions for higher-order systems. Exercises 1 and 2 

 

20.4 Empirical approach to substitutional solutions 

Exercise 20.4.1 

It has been suggested that the temperature dependence of the regular solution parameter L 
should be described with A + B/T instead of a + bT because the latter expression may 
make L change sign at some high temperature which is claimed to be unrealistic. Of 
course, the same objection can be raised against the new suggestion because it may 
change sign at some low temperature. Anyway, accept the new suggestion and evaluate 
the enthalpy and entropy parts of L. 

Hint 

Write L = LH – LsT. 

Solution 

By definition Ls = – ∂L/∂T = B/TT

2 and LH = ∂(L/T)/∂(1/T) = A + 2B/T. 

Exercise 20.4.2 

The Fe–Cr phase diagram has a two-phase region γ(fcc) + α(bcc) which cannot be 
described by applying the thermodynamics for dilute solutions because it has a minimum 
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(at about 1123 K). Try to explain this behavior with the regular solution model. At the 
same time evaluate the 'lattice stability' of fcc-Cr as a function linear in T, i.e. 

. The quantity  is known and is tabulated here together 
with information on the γ + α region. The tabulated compositions are taken in the middle 
of γ + α where one may assume that γ and α have the same Gibbs energy. 

bTaGG Cr
o

Cr
o +=− αγ αγ

Fe
o

Fe
o GG −

T(K) α
Crx  )/( molJGG Fe

o
Fe

o αγ −  

1170 0.012 10.54 

1170 0.121 10.54 

1600 0.057 – 30.12 

Hint 

From the table we get three conditions through . Two parameters are already 
defined, a and b. Let the third one be L

γα
mm GG =

γ – Lα. 

Solution 

For each phase . At  where 
 we have . The data in 

the table will give: 

LxxTSGxGxG CrFe
ideal
mCr

o
CrFe

o
Fem +−+= o

CrCrCr xxx == γα

γα
mm GG = )()()(0 αγαγαγ LLxxGGxGGx o

Cr
o
FeCr

o
Cr

oo
CrFe

o
Fe

oo
Fe −+−+−=

0.988·10.54 + 0.012(a + 1170b) + 0.988·0.012(Lγ – Lα) = 0; 
0.879·10.54 + 0.121(a + 1170b) + 0.879·0.121(Lγ – Lα) = 0; 
0.943·( – 30.12) + 0.057(a + 1600b) + 0.943·0.057(Lγ – Lα) = 0;. 

We find . )/();/(417.23476 molJLLmolJTbTaGG Cr
o

Cr
o αγαγ −+=+=−

Exercise 20.4.3 

For a binary solution with a constant positive L in Gm = xA°GA + xB°GB + RT(xAlnxA + 
xBlnxB) + LxAxB there will be a symmetric miscibility gap. Show that close to the critical 
point the width of the gap is 3  times the width of the spinodal curve according to our 
model. 

Hint 

We have seen that the spinodal curve for a symmetric system is described by xAxB = 
T/4TTcrit = RT/2L. Let Δx be the width of the spinodal. For symmetry reasons 

 and Δx can be expressed in terms of (T2/)1(;2/)1( "' xxxx BB Δ+=Δ−= Tcrit – T)/TTcrit. 
Derive a similar equation for the binodal curve using the condition that dGm/dxB should 
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have the same value for the phases in equilibrium, i.e. for  and for 
. Then introduce the approximation ln(1 + Δx) = Δx – Δx

2/)1(' xxB Δ−=
2/)1(" xxB Δ+= 2/2 + Δx3/3. 

Solution 

Spinodal: T/TTcrit = 4(1 + Δx)(1 – Δx)/4 = 1 – Δx2; Δx2 = (TTcrit – T)/TTcrit. 
Binodal: dGm/dxB = – °GA +°GB + RTln(xB/xA) + L(xA – xB) should have the same value on 
both sides: RTln[(1 – Δx)/(1 + Δx)] + L(1 + Δx – 1 + Δx)/2 = RTln[(1 + Δx)/(1 – Δx)] + 
L(1 – Δx – 1 – Δx)/2. This gives RT( – Δx + Δx2/2 – Δx3/3 – Δx – Δx2/2 – Δx3/3) + LΔx ≅ 
RT(Δx – Δx2/2 + Δx3/3 + Δx + Δx2/2 + Δ x3/3) – LΔx and 1 + Δx2/3 = L/2RT = TTcons/T; Δx2 = 
3[(TTcrit/T) – 1] = 3(TTcrit – T)/T ≅ 3(TTcrit – T)/TTcrit. 

20.5 Real solutions 

Exercise 20.5.1 

Show that for a multicomponent solution ∂lnfj/∂xi – Σxk∂lnfj/∂xk = ∂lnfi/∂xj – Σxk∂lnfi/∂xk. 

Hint 

From Exercise 20.3 we know that ∂EGj/∂Ni = ∂EGi/∂Nj and thus ∂lnfj/∂Ni = ∂lnfi/∂Nj. Now 
consider lnƒi and lnƒj as functions of xi, etc., and remember that ∂xi/∂Ni = (1 – xi)/N and 
∂xi/∂Nj = – xi/N. 

Solution 

ij
ik

kkjiijij xfNxxfNxxfNf ∂∂=−⋅∂∂+−⋅∂∂=∂∂ ∑
≠

/ln(/)1()/ln(/)1()/ln(/ln  

; Nxfx kjk /)/ln ∂∂Σ− NxfxxfNf kikjiji /)/ln/ln(/ln ∂∂Σ−∂∂=∂∂ . The two right-
hand sides must be equal because the two left-hand sides are. 

20.6 Applications of the Gibbs–Duhem relation 

Exercise 20.6.1 

The diagram shows experimental values of aA1 in A1–Ag alloys, represented through the 
quantity  Accept that he solid line represents a reasonable curve across the 
whole system. Both Al and Ag are fcc and one can imagine a gradual change of this 
phase from pure Al to pure Ag provided that the ζ phase can be prevented. A 
corresponding curve (dashed line) has been drawn tentatively but obeying the rule that 
the two shaded areas must be equal. Prove that rule. 

2/ln AgAl xf
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Hint 

Imagine that EGm for an alloy with a low value of xAg is calculated from lnƒA1 by 
integration from pure Ag, following two different routes in the middle of the system. 

Solution 

AlAgAlAgAlAlAgAgm
E dxxfxfxfxRTG )/(lnlnln/ 2∫=+= . The integral represents the 
area under the curve one follows on integration. The difference between the two shaded 
areas represents the difference in integrated area if we follow the two different paths. In 
order to yield the same result after crossing the two-phase field, the two shaded areas 
must be equal. 

Exercise 20.6.2 

Derive Raoult's law from Henry's law for a binary solution. Then examine if one can go 
the other way. 

Hint 

We assume that ƒ2 is constant and thus dlnf2/dx2 = 0 from x2 = 0 up to some small value. 

Solution 

When calculating ln ƒ1 by integration of Eq. 20.46 we find that the integrand is zero. Thus 
ln ƒ1 = 0 and ƒ1 = 1 in agreement with Raoult's law. On the other hand, if we start with 
Raoult's law, ƒ1 = 1, then dlnƒ1/dx1 = 0 but when calculating ln ƒ2 by integration we now 
find that the integrand is indeterminate, (dlnƒ1/dx1)/x2 = 0/0. It is not possible to predict 
the slope of the line representing Henry's law. 

Exercise 20.6.3 
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Show that for a binary solution phase 
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Hint 

Take the derivative of EGm = xA
EGA + xB

EGB remembering xA + x  = 1 and using 
 from Eq. 7.16. 

B

jj
E fRTG ln=

Solution 

dEGm/dxA = EGA – EGB = RTln(fA/fB) since ΣxidEGi = 0. Thus we get, by again using the 
Gibbs–Duhem relation,  ABAAm

E dxffddxGdRT /)/ln(/)/1( 22 −=⋅−

AABAABAAABA dxfdxdxfdxxfddxfdfd /ln)/1(/]ln)/(ln[/)lnln( −=+−=−−=  
. )(/ln2 2

BA xdfd=

20.7 Dilute solution approximations 

Exercise 20.7.1 

In the ε formalism we may define  as and  as . Examine a 
ternary system. Under what conditions would we have ? 

C
Bε CB

E xG ∂∂ / B
Cε BC

E xG ∂∂ /
B
C

C
B εε =

Hint 

First apply the Gibbs–Duhem relation for excess quantities to variations in xB and take the 
derivative with respect to xC. Then do it the other way and compare the results. Notice 
that xA must be replaced by 1 – xB – xC. 

Solution 

Gibbs–Duhem in this form (1 – xB – xC)∂EGA/∂xB + xB∂EGB/∂xB + xC∂EGC/∂xB = 0 would give 
us (1 – xB – xC)∂2EGA/∂xB∂xC – ∂EGA/∂xB + xB∂2EGB/∂xB∂xC + ∂EGC/∂xB + xC∂2EGC/∂xB∂xC = 0. 
Gibbs–Duhem in this form (1 – xB – xC)∂EGA/∂xC + xB∂EGB/∂xC + xC∂EGC/∂xC = 0 would give 
us (1 – xB – xC)∂2EGA/∂xC∂xB – ∂EGA/∂xC + xB∂2EGB/∂xC∂xB + ∂EGB/∂xC + xC∂2EGC/∂xC∂xB = 0. 
From the difference we obtain ∂(EGC – EGA)/∂xB = ∂(EGB – EGA)∂xC. It is thus necessary to 
have ∂EGA/∂xB = ∂EGA/∂xC. This is fulfilled in the ε formalism because these derivatives 
are both zero. It is not fulfilled in the quadratic formalism. We may conclude that 

 holds for dilute solutions only. B
C

C
B εε =

Exercise 20.7.2 
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Show for a ternary system under what conditions , which is a notation for 
∂

BC
C
B gRT =ε

2Gm/∂xB∂xC. 

Hint 

From the definition of  we have  which can be calculated from GC
Bε CB

C
B xGRT ∂∂= /ε B = 

Gm + (1 – xB)∂Gm/∂xB – xC∂Gm/∂xC where Gm is regarded as a function of xB and xC. 

Solution 

222 ///)1(// CmCCmCBmBCmCB
C
B xGxxGxxGxxGxGRT ∂∂−∂∂−∂∂∂−+∂∂=∂∂=ε  

. The second term may be neglected 
at small x

2222 /// CmCCBmBCBm xGxxxGxxxG ∂∂−∂∂∂−∂∂∂=

B but for convenience we shall keep the part which comes from the ideal entropy 
of mixing, RTxB/xA. The third term may be approximated by the part coming from the 
ideal entropy of mixing RTxC(1/xA + 1/xC). We obtain . 

The last term is approximately – RT and it can be neglected only when 
ACBm

C
B xRTxxGRT // −∂∂∂=ε

1>>C
Bε . 

20.8 Predictions for solutions in higher-order system 

Exercise 20.8.1 

Suppose the properties of a certain solution phase are known in the binary systems A–B, 
B–C and C–A. When the ternary parameter IABC was evaluated from some ternary 
information one found that it was practically zero. In that assessment one described the 
binary A–B properties with an expression xAxB(0LB + 1LBxB). Suppose that the assessment 
is repeated using an expression xAxB(0LA + 1LAxA). What value would one then obtain for 
the ternary parameter? 

Hint 

We must suppose that the two binary expressions are identical in the binary case, 0LB + 
1LB(1 – xA) = 0LA + 1LAxA. Thus,0LA = 0LB + 1LB and 1LA = – 1LB. 

Solution 

Omit all terms from B–C and C–A because they are the same in both cases. The result of 
the second assessment is written in the form: 

xAxB(0LA + 1LAxA) + xAxBxCIABC. By the use of xB = 1 – xA – xC, transform the result of the first 
assessment to this form: xBxB(0LB + 1LBxB) = xAxB(0LB + 1LB – 1LBxC) = xAxB(0LB + 1LB – 1LBxA) 
a+ xAxBxC( – 1LB). Comparison gives 0LA = 0LB + 1LB and 1LA = – 1LB which we knew before 
but we also find IABC = – 1LB.

20.9 Numerical methods of predictions for higher-order systems 
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Exercise 20.9.1 

Prove that Muggianu's method for a ternary system correctly reproduces a term written in 
the form  in the binary ij system. ij

kk
jiji Lxxxx ⋅− )(

Hint 

Start by evaluating the value of  for the binary alloy used in the method. Then 
multiply by the weight recommended by Muggianu. 

ij
m

EG

Solution 
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jiji Lxxxx ⋅−Σ= )(

Exercise 20.9.2 

The excess Gibbs energy for a binary system is represented with the following expression 
according to the subregular solution model, EGm = xAxB[0LAB + 1LAB(xA – xB)]. Suppose this 
expression is included in the Gibbs energy for a ternary A–B–C system. Derive 
expressions for the corresponding contributions to the partial Gibbs energies for A and C, 
respectively. 

Hint 

Use EGj = EGm + ∂Gm/∂xj – Σxi∂Gm/∂xi. Note that xB = 1 – xA cannot be used in the ternary 
system. 

Solution 

BAABBABABAABABBABBAABA
E xxxxxxxxxxLxxxxxxxLG 22()( 22210 ⋅−−+−+−−+=  

 

. 
BABABABABAijABijBABABBA xxxxxxxxxxLxxLxxxxxxx 222221022 2()1()2 −+−−+−=⋅+−+

)](2[)](2[)()2 10102
BAABABBABABAijBAABBA xxLLxxxxxxLxxLxx −⋅+−=−−+−=+
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