Pottie and Kaiser: Principles of Embedded Network Systems Design


Experimental Systems Design and Simulation (Chapter 15)

· Gaps between theory, simulations, lab experiments, field experiments, and field deployments

· Related to degree of human intervention permitted to change the system  (getting things to work).  

· Research programs loop through these stages as experimental results suggest new directions for theory. 

· Since embedded network systems are about connecting the physical world to large scale networks, physical experiments must be performed to verify their proper operation.  

· Make simplifying assumptions in early design stages, but no system that is designed to interact with the real world can really be trusted without a set of real deployments that test these assumptions.  

· Lecture (and this course) concerns basic design stages of the development of experimental systems from formulation of objectives and assembly of the design and application team through deployment.

Step 1: Deciding on Priorities

· Most important decision in design is determining the set of priorities (which may change as the project proceeds)

· What particular problems will the system solve?  

· Can slightly different problems be addressed at much less cost and effort?  

· Who will need to be consulted or be on the design team to help determine the problem formulation?  

· Formal high school/university laboratory report with objectives, theory, method, results, analysis and conclusion not the best example

·  students don’t have say in the creation of the objectives, theory or method, and the team is usually the student and one or two partners. 

· In research by contrast:

· we don’t know the right questions,

· the theory is incomplete

· the method radically depends upon resources available and the manner the questions are posed. 

· critical to assemble a team that can discuss the relevant issues and cast the problem in such a way that a solution can be crafted with the resources available.  

· Individual members contribute unique talents to the effort, but building experimental systems is usually the work of a team.

· Very difficult unless there are some team members who have had related experience. 

· past experience is an excellent guide to what types of procedures will work.

· classic engineering team has an experienced senior manager (e.g. a professor or group leader), some engineers with mid-level experience and others who have never done anything like the project being attempted. 

· junior team members MUST ask questions about why a project is planned in some way both among themselves and to the team leader. 

· interaction gets whole team to come to a common understanding of what is to be done and for the objectives to be sharpened into something that is actually useful.  

· In explaining problems to one another solutions appear that would never occur to the individuals acting alone. 

· In this course, each team may consult with TA and professor as well as other teams. 

Example: The pre-NIMS objectives

· Began as way to organize projects in 180D.  

· Since interfaces needed to be understandable to other students, decided that a team of undergraduates would create the nodes and software for a system to include articulated cameras and antennas.  

· First class design projects were in signal propagation, network self-assembly and object detection/recognition (the experiments), but students in the class were to be free to propose other uses of the nodes and components provided

· Led to requirement for flexible computational platform together with relatively simple interfaces. 

· The resources available were a limited budget, considerable experience with several generations of static sensor nodes, and access to the shops 

· A linux-based solution was decided 

· many students are familiar with it 

· many existing applications and software packages 

· Energy efficiency was less important than ease of programming given the short time available for the class and the need to enable a broad set of projects. 

Step 2: Design Iteration

· Easy to modify objectives early on

· Some tasks thought to be difficult are quickly accomplished or some things turn out to be much more difficult than expected.  

· Open discussion is needed to make appropriate corrections. 

· Larger scale projects use the design-gate process.  

· Formal reviews are held at the stages of feasibility study, prototype design, prototype testing, and one or two stages of product (ruggedized system) testing.  

· Deadlines are associated with each of these stages so that the team is coordinated and features that are desirable but inessential can be dropped in favor of those actually required for implementing the base functionality. 

· The feasibility study may include theory and simulations, investigation of hardware availability and cost, and consideration of the experimental logistics. 

· A prototype design tests the system in relatively controlled conditions. 

· Some subset of the final functions of the system are tested, with expectation of much more human intervention than in a final system

· many bugs are identified and look into how to evolve the system towards greater robustness and/or lower cost. 

· In all stages the production of a verification and testing plan is vitally important

· must have objectives that the system must meet, and means of measuring whether or not it does so.  

· Without this, little chance of making good decisions about what does or does not work.  

· In early stages the system architecture is more malleable since fewer resources have been invested and the cost of change is much less than later on.  

· Patches that are applied outside the basic schema are more prone to bugs  

· important to get the main outlines of the design largely correct in the prototyping stages.  

Interfaces and Documentation

· sometimes boring but absolutely critical 

· arrange set of tasks must so that individual efforts can proceed without frequent re-sets involving the whole group.  

· Well-defined interfaces between different hardware blocks or layers of software abstractions are very useful 

· greater independence of effort 

· simplifies the debugging process. 

· interfaces define the external face of a subsystem, which may then be developed and debugged without reference to other components. 

· restricts the number of variables that may pass between subsystems or layers thus limiting the number of ways two segments can cause errors when they connect.  

· Example:  the TCP/IP protocol stack, in which networking and transport protocols are designed independently of the physical layer by means of a set of software abstractions.  

· interfaces suggest a set of tests that need to be performed to verify reliable operation.  

· Most project development is consumed in testing and debugging; anything that reduces the time is welcome

In Praise of Previously Debugged Software and Hardware

· Massive effort required to define and debug the whole set of interfaces required in any system that connects the physical world to the internet MUST make use of standard interfaces for much of the design.  

· Have been tested in real operation, but there are tools and applications that make use of them. 

· Increases the likelihood that many team members are already familiar with them, decreasing the bug generation rate. 

· New interfaces are mandated only when large performance gains are anticipated, and some of these might be postponed to later stages of the design.  

· The tabula rasa approach is both intellectually thrilling and stupid in practice

· innovate to the minimum extent possible; challenging problems demand innovations enough without making life deliberately harder.

The Importance of Documentation 

· needed even in individual efforts

· hard to recall what was being thought about when particular pieces of code were constructed days/weeks/months in the past.  

· Teams need common standard of documentation so that other team members can take over tasks without large effort.  

· Does not require every line of code to be documented as it is produced

· most code does not survive debugging.  

· When debugged code or hardware designs are archived as official versions (or “builds”) they must be accompanied by appropriate documentation.  

· Fraction of time involved in documentation effort for interfaces, code, and hardware layouts grows faster than linearly with team size.  

· Often perceived to be pure drudgery for most engineers and computer scientists (you mean I have to write??)

· Failure to put the appropriate amount of time into these tasks makes it very difficult to 

· spin off new experiments or projects

· bring in new team members

· transition the system to the next stage of development.

Example: NIMS from the Laboratory to the Classroom

· Interface in lab prototype system used Linux file access utilities of Linux. 

· Files made available on a master node to which users could gain access to avoid giving root privileges.  

· Ex: Commands to have a motor connected to a remote node go through some number of steps are written to a file that is transmitted to that node, and then executed when the file was read. 

· Ex: Images could be captured from cameras on remote nodes and then image processing done using the Magick tool set.  

· Numerous changes required for system to work well in classroom

· file access mechanisms could not scale to the demands of a class; socket connections were developed

· development time for imaging applications could be greatly reduced by upgrading to the Open CV tool set.  

· needed remote access to windows computers (home PCs).  

· Tutorials and labs needed to be developed so that students could quickly become familiar with the basic features of the system.

Step 3: Simulations, Tools and Testing
· Seldom have perfect model

· engineering is in large measure the art of finding the useful approximation.  

· Large fraction of system design process is finding a model that 

· captures the essential system dynamics 

· simple enough to reason through the tradeoffs, design a simulation, and ultimately build and test the system.  

· Leaves out details that can obscure the most important features, or result in complicated calculations or hardware to deal with second order effects.  

· Part of the design iteration process is to discover which effects are important enough to worry about.  

· E.g. may know that a system is non-linear, if the non-linearities are small enough a linearized (and simple) solution may be adequate 

· A higher performance system may demand a more accurate model and thus more complicated architecture.

Optimization

· Optimization and operations research theory provide mathematical tools for tuning systems to meet objectives 

· Require the physical constraints be quantitatively specified (e.g., energy reserves, communications bandwidth, signal to noise ratio as function of density etc

· Require cost or revenue functions be created.  

· encapsulate the objectives such as the spatio-temporal fidelity of observations, error rates, latency, and relative priority of different applications/users.  

· cost or revenue is associated with a given grade of service, while costs are also associated with the various systems resources (e.g. number of nodes, size of batteries, processing capability).  

· Allows quantitative trades to be made among level of service and resources.

· For ENS, many problems of interest are so complicated that they may be solved only for small numbers of nodes.  

· Simulations using heuristics used to extend results.  

· Actual quality of service priorities are difficult to pin down until users have interacted with some version of the system.  

· These lead to the need for design iterations.

Simulations

· Start with an analysis of (your guess of) most significant factors in system performance.  

· both numerical optimizations and evaluations of closed form expressions.  

· Use the  results to create  simulation to test a design in more detail.  

· simulation is a computer model of the physical system

· includes random components that are difficult to analyze except in certain special cases.  

·  special cases ease debugging.  

Example:  Digital Communications System 
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· each of the components of this system can be analyzed separately for particular sets of conditions.  

· determining the combined effects of intersymbol interference and noise together with imperfect synchronization is evaluated using a baseband simulation

· a sampled system with the carrier removed and phase simulated using a complex representation.  

· Steps:

· Do the analysis and test the pieces separately

· modulator/demodulator combination is tested with a channel that reproduces T-spaced inputs as outputs.  

· Gaussian noise is added and the combination tested again.  

· channel is then modified for whatever sampling rate will actually be used in the equalizer, still with Gaussian noise only

· equalizer is added for some ISI pattern for which the results can be readily obtained.  

· Finally,  adaptive algorithm for the equalizer is tested.  

· Add the synchronization loop 

· Channel model must include frequency and phase offsets

· Sampling rate increased so that synchronization loop interpolation filter can emulate a digital loop.  

·  T/2 rate is usually good enough, when combined with (analytical) sinc function interpolation to T/16 sampling or faster within the synchronization loop.  

· The synchronization loop should is first tested without noise or ISI, then add noise, and finally ISI.

· Next deal with non-linearities and other second-order effects

· E.g., non-linear power amplifier, non-Gaussian noise, other statistics for phase and frequency offsets

· Simulation in this case produces results even when no closed form solution exists for individual components

Simulating at Multiple Levels of Abstraction

· Sensor network contains systems of systems each of which may be more complicated than the prior example.  

· Each must be tested individually, and then in various combinations.  

· Impossible complexity for networks if every component must be modeled at the same level of detail.  

· Communications might be modeled at the level of packet loss rates inferred from a more detailed prior study

· A heterogeneous mix of levels of abstraction is the norm in simulating complicated systems.  

· Can also extract heuristics from simulations for less critical components or subsystems
Software Modularity

· For team efforts, good practice to create a structure of interfaces that it is parallel to the hardware and software interfaces that will exist in the finished system.

· team members can produce simulation modules that can be interchanged and re-used in different projects

· can begin with a commercial (or freeware) tool set and extend it with new blocks, or begin with a new simulation model entirely if there is nothing available at the desired level of abstraction.

· Many commercial tools have been built in this fashion

· Must also follow documentation standards

Tools

· more design time spent on software than hardware in embedded systems projects.   

· Little desire to mess with working hardware

· temptation to tinker with that which can apparently be easily changed

· Result is need for tools to assist the software development and debugging.  

· Ex: platform emulator 

· Code written for the emulator (which can run on essentially any standard processor) will also run on the target platform.  

· debugging tools provided to give better diagnostics than are available on the smaller platform.  

· Some tools also enable “hardware in the loop” simulations in which some code runs on the actual platforms while other components are simulated. 

Example : The Em* Environment

· Assists in the development of wireless sensor networks 

· Same software can be used for pure simulation of a network, directly ported onto nodes, or tested in hardware in the loop simulations.  

· Allows code to be shared among a variety of applications.  

· Protects users against many bugs and inconveniences

· In embedded systems have device drivers that sit below the operating system; code here is not subject to the safeguards of the OS.  

· few programmers have extensive experience with device drivers in the kernel.  

· Em* employs the FUSD environment, which allows drivers to be written in user space that at once have access to the physical device drivers but also have all the protections of the Linux operating system. 

· Also simplifies the process of sharing a common resource such as a sensor or communications device. 

· Environments of this type build up over time: graphical tools, improved run-time control, increased number of devices supported, and debugged code modules available for porting. 

Testing and Validation

· experiment is only considered valid if it is sufficiently documented to be reproducible.  

· includes procedures for determining the uncertainty in the measurements.  

· Calibration is the process whereby less accurate instruments are compared to a more reliable standard on some periodic basis to estimate and reduce the level of uncertainty.  

· E.g. a freely running crystal oscillator deviates from its nominal frequency due to conditions of manufacture and environmental variables such as temperature. 

· Periodically comparing its time to that of GPS (based on atomic clocks) can allow corrections to be made in between these time fixes using interpolation.  

· Temperature measurements can be used to further refine the corrections or allow the GPS calibration period to be longer.  

· Many examples of calibration requiring elaborate procedures due to large number of sources of error

Meta-data

· Example: wave propagation 

· Not simply spherical wavefronts freely expanding.  

· Media changes, reflections, and multi-path 

· Must document the physical situation (soil conditions, map of obstruction and measurement locations, picture of scene, meteorological conditions, etc.) so that other researchers can characterize the types of conditions under which similar results would be obtained. 

· Such meta-data is just as important as the measurements that are being collected; without it, they have no context.  

· Which data are collected depends on the measuring mode and prior expectations regarding the factors that affect the measurements.  

· in retrospect may realize some additional factors need to be accounted for, and in this way the meta-data set in subsequent experiments grows.

· While experiments often are only good for one purpose, with careful recording of metadata new uses can sometimes be made of the data  

· Database tools used in particular scientific applications include a specification of the types of meta-data that are needed based on the experience of the user community, along with blank fields to allow new types to be added.  

· Whether or not a standard tool exists, must create protocol for logging the data for the experiment so that the meta-data (including notes on calibration) is prompted either in the instruction booklet or by the computer. 

· Saves enormous time in field testing

Step 4: Project branching

· interesting new possible objectives arise during development of experimental systems, 

·  from the thought process as ideas are developed further 

· from the experimental results.  

· This brings the question of whether to expand the set of capabilities of the system.

· In a commercial setting, should resist this temptation

· time to market is critical for electronics and software 

· feature creep leads to costly bugs  

· If the feature is compelling it can become the basis of a new branch of the project, with appropriate changes to the architecture and team as needed.  

· new branch can be managed as a separate project with its own deadlines and review processes.  

· single successful design project can lead to many progeny each of which does something in particular well, rather than one grand project that is unlikely to do much of anything well even if it ever sees the light of day.  

· result is suite of products, algorithms and tools that cover a broad set of applications.

· Academia has softer constraints 

· projects less frequently take the entire path to mass deployment.

· feature creep is still trouble in performing experiments.  

· An experiment will answer a small number of questions well, and will require considerable re-design to answer other questions.  

· Since the results must be cutting-edge, requiring the system to do many things may result in mediocre performance that will not be of interest to anyone.  

· branching is also good practice in academic exercises. 

· The branching process is the basic engine of progress in engineering and science.  

· Components, theory, and software are combined and added to, and made available to other projects in an almost organic fashion. 

Example: NIMS is Born

· One iteration of a senior design course dealt with articulated antennas and sensors; we then asked what kinds of limited mobility might be helpful in monitoring natural environments.  

· discussion progressed from nodes that could climb guy-lines up trees or towers (for a better field of view) to nodes that would traverse between trees on other wires. 

· this kind of mobility represented a large departure from other ongoing research, and so a team was assembled to pursue a new research contract.  

· team included both engineers and scientists so that the benefits of constrained mobility for these applications could be carefully thought through.  

· Many discussions over several months were held in refining the proposal for research, and in the meantime an undergraduate team was assembled to begin constructing a prototype to investigate feasibility.  

· The core of the team was composed of students who had taken the design course or were involved in the creation of the nodes. 

· many of the hardware and software components were re-used.  A prototype was tested before the proposal was produced, giving confidence that more advanced systems could be constructed in a timely fashion.

Example: NIMS becomes Treebots

· design team augmented by students hired in a summer research program, many without prior embedded systems experience.  

· Students with experience assumed mentorship (team leader) roles along with selected graduate student researchers; team had 23 members

· Development projects included locomotion, solar energy system, conveyance of power, systems for attaching cables, remote control via 802.11b radio, a sensor module to be lowered from the main node, and the vision system (which included scene change detection).  

· same shell was used as in the original prototype,  but most of the guts were replaced with new components to deal with a more challenging deployment scenario. 

· The target test was the Wind River canopy crane project, in which a large construction crane is used to move instruments in support of measuring the carbon flux of forests. 

· In the interim, tests were performed using a contraption of step ladders, and on cables between trees in the BH courtyard.  

· Weekly project meetings were supplemented by meetings of the various groups, and progress compared to schedules.  

· the system was successfully deployed 50 m off the ground on a track between two large trees capable of significant swaying in the wind.

· A BBC crew called the result “treebots”

Example: NIMS comes to the classroom and leads to NIMS LS and NIMS RD

· Next question was what to do for 180D.  

· treebot node was too big and difficult to use in typical instructional labs.  

· design tasks of some groups in the next iteration of the course were to design smaller systems with alternative means of locomotion, e.g. with the motor not on the node itself.  

· Placing the motor elsewhere reduces the weight of the node and depending on the system can make the components that are likely to need servicing more accessible.  

· Lessons learned from these designs were then applied in the next cycle of development in the research program.

· Currently have three different systems based on concepts developed in course

Step 5: Users in the Design Team

· Extremely helpful to systems development if the end-users are active participants at an early stage.  

· ongoing dialogue re: what is or is not important is needed for both sides in order to make timely progress.  

· “build it and they will come” works better in movies than in real life.  

· Sometimes the system developers and end-users are one and the same (e.g., the early internet), but usually they are not.  

· Ex: In planetary exploration missions (note, networked embedded systems), engineers and scientists are paired in the same team to assure that meaningful experiments can be carried out with engineered systems that are pushed to the edge.  

· spectacular results of such collaborations (e.g., Voyager, Hubble space telescope, Mars rovers…) 

· In commercial enterprises, marketing representatives must often serve as proxies for end users (the customers), ideally translating wants and desires into technical requirements.

· Second benefit: a dialogue that has end-users and designers understand each other’s constraints can be motivating to both sides to consider new possibilities.  

· explaining what is needed to a non-expert can greatly sharpen thinking,

· novice who has depth in some other discipline may pose questions that would not occur to experts within a field.  

· Both sides learn and realize dreams that neither would be able to accomplish on their own. 

Summary

This lecture has briefly treated the broad issue of design of experimental systems, from formulation of initial objectives, through assembly of the team, to the iterated cycle of development that includes feasibility study, simulations, prototyping, and deployment.  Clarity of objectives is perhaps the most important factor in the efficient creation of systems, as this suggests what kind of design team is needed and what figures of merit to apply at the different decision stages.  Interactions between the design team and the end users are extremely valuable, allowing focus on the essential features and modifications when initial objectives prove too challenging.
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