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• Page 57: Addendum — add an extra exercise:

Exercise 2.5 Evaluate the ray integrals (2.3.7), (2.3.8) and (2.3.12) (re-
maining valid for (2.3.26)) for a medium with a linear velocity function
(see Section 2.5.2). Show algebraically that the ray path is an arc of a
circle.

Answer: For algebraic simplicity, we shift the depth origin so it lies
where c(z) would be zero, i.e. the velocity-depth function is c(z) = c′z.
The physical medium exists for z > 0 if c′ > 0, and for z < 0 if c′ < 0.

The travel-time integral (2.3.7) is then

T (p) =
∮ dz

c2q
=
∮ dz

c′z(1 − (c′pz)2)1/2
=

1
2c′

log
(

1 − cq

1 + cq

)∣∣∣∣ ,
where cq = (1−c2p2)1/2. Note that the logarithm is negative and decreases
to zero at the turning point z = 1/c′p (but the definite integral for a
positive z range, is positive, of course).

The range integral (2.3.8) is

X(p) =
∮

p dz

q
=
∮

c′pz dz

(1 − (c′pz)2)1/2
= − cq

c′p

∣∣∣∣ .
We can differentiate this directly to obtain the geometrical spreading
(2.3.12)

dX

dp
=

1
cc′p2q

∣∣∣∣ .
The indefinite function for the range function −cq/c′p is zero at the turn-
ing point, i.e. − cq/c′p is the range measured from the turning point, so
the turning point does not contribute to this differential, and this expres-
sion for dX/dp remains valid with a turning point (2.3.26) provided the
turning-point limit is omitted.

Measuring the horizontal range from the turning point, where z = 1/c′p,
we have

X2(p) + z2 =
(

cq

c′p

)2

+ z2 =
1

(c′p)2
,

i.e. a circle of radius 1/c′p.
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• Pages 92, 595 and 597: Addendum — add references (Fedorov, 1968 ;
Silver and Jordan, 1982† ; Mehrabadi and Cowin, 1990‡ ).

and add after equation (4.4.15)

(Fedorov, 1968, pp. 14-5, mentioned the attraction of this notation but did
not pursue it; Silver and Jordan, 1982, pp. 761-2, used it as a convenient
isomorphism to represent moment tensors as vectors; and, Mehrabadi and
Cowin, 1990, showed that C̃ is a second-rank tensor).

• Page 98: Addendum — after equation (4.4.54) it is useful to add the
text:

For some purposes when using the Voigt notation for the compliances,
some authors, e.g. Nye (1957, p. 134), have found it convenient to intro-
duce factors of 2 (Smn = 2sijkl when either m or n is 4, 5 or 6) or 4
(Smn = 4sijkl when both m and n are 4, 5 or 6) rather than using the
modified form, C̃ and S̃, of the matrices.

• Page 121: Erratum — the reference to Backus and Mulcahy (1976a)
should be to Backus and Mulcahy (1976 b ).

• Page 124: Addendum — to clarify add after the first sentence:

Remember that the decomposition into SV and SH waves, (4.6.19) and
(4.6.20), depends on the vertical axis, i.e. (4.5.80) and (4.5.81). If the
axes are rotated, the decomposition will be inappropriate. The appropri-
ate shear polarization or linear combination of expressions (4.6.19) and
(4.6.20) should be used. This, of course, also applies to Sections 4.6.2.2
and 4.6.2.3 .

• Page 133: Addendum — add an extra exercise:

Exercise 4.13 Determine the compliance matrix S for a TIV medium,
i.e. the equivalent of (4.4.54) from (4.4.53) for isotropic media, but for
(4.4.60) for TIV media (see Nye, 1957).

Answer: Isotropic Media: In isotropic media, the Voigt matrix has

† Silver, P.G. and Jordan, T.H., 1982. Optimal estimation of scalar seismic moment, Geophys.
J.R. astr. Soc., 70, 755–87.

‡ Mehrabadi, M.M. and Cowin, S.C., 1990. Eigentensors of linear anisotropic elastic materials,
Q. J. Mech. appl. Math., 43, 15–41.
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the form (4.4.53)

C =



λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


,

and the compliance matrix has the same symmetries (4.4.54). As is well
known, the elastic stiffnesses can be written (4.4.49)

cijkl = λ δij δkl + µ(δik δjl + δil δjk),

and the compliances as

sijkl = λ̄ δij δkl + µ̄(δik δjl + δil δjk),

where (4.4.54)

λ̄ = − λ

2µ(3λ + 2µ)

µ̄ =
1
4µ

.

It is readily verified that

λ̄ + 2µ̄ =
λ + µ

µ(3λ + 2µ)
.

TIV Media: In TIV media, the Voigt matrix has the form (4.4.60)

C =



λ⊥ + 2µ⊥ λ⊥ ν 0 0 0
λ⊥ λ⊥ + 2µ⊥ ν 0 0 0
ν ν λ‖ + 2µ‖ 0 0 0
0 0 0 µ‖ 0 0
0 0 0 0 µ‖ 0
0 0 0 0 0 µ⊥


,

and the compliance matrix must have the same symmetries with five pa-
rameters, λ̄⊥, µ̄⊥, λ̄‖, µ̄‖ and ν̄. Nye (1957, p. 147) has given expressions
for the relationships between the compliances and stiffnesses. The results
are (remembering that Nye (1957, p. 134) has introduced factors of 2 and
4 in the compliance terms to make the relationship between compliance
and stiffness, and vice versa, symmetrical)

λ̄⊥ =
λ‖ + 2µ‖

2c
− 1

4µ⊥
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µ̄⊥ =
1

4µ⊥

λ̄‖ =
2(λ⊥ + µ⊥)

c
− 1

2µ‖

µ̄‖ =
1

4µ‖

ν̄ = − ν

c
,

where

c = 2(λ‖ + 2µ‖)(λ⊥ + µ⊥) − 2ν2.

It is straightforward to confirm that this reduces to the isotropic result,
in particular that λ̄⊥ = λ̄‖ = ν̄ = λ̄.

• Page 154: Erratum — there is a typo in the subscript in equation
(5.2.41) which should read

Ppx(T0, T ) = − PT
p x (T, T0). (5.2.41)

• Page 165: Erratum — the factor of 1/2 is missing from the second
expression in equation (5.3.18), i.e. it should read

HI(x,p) =
1
2

pjpkĝT
I ajkĝI =

1
2

ĝT
I ΓĝI (5.3.18)

(with no summation over I).

• Page 166: Addendum — in the parentheses after equation (5.3.20) add
the sentence:

( . . . . Only the symmetric part of ajk contributes to the Hamiltonian
(5.3.18) and equations (5.3.20) and (5.3.21), i.e. aS

jk = (ajk + akj)/2, but
(5.3.20) is valid, as (ĝT

I ajkĝI)T = ĝT
I akjĝI ).

• Page 184: Erratum — equation (5.7.9) should read

α2
S dpxS dpyS = sin θS cos θS dθS dφS. (5.7.9)

The error does not persist and equation (5.7.10) is correct.
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• Page 187–8 Erratum — in equations (5.7.29) and (5.7.41), the subscript
xi should be x1, i.e.

∂ (∆x 1 )
∂p1

=
A66

A2
44p

3
3

∆x3 =
∆x1

p1

(
1 +

p1

p3

∆x1

∆x3

)
, (5.7.29)

and
∂ (∆x 1 )

∂p1
=

∆x1

p1

(
1 +

p1

p3

∆x1

∆x3

)
+

4
p3∆x3

A11A44p
2
1∆x2

3 − Ap1p3∆x1∆x3 + A33A44p
2
3∆x2

1

Ap2
1 + 2A33A44p

2
3 − A33 − A44

.

(5.7.41)

• Page 197: Addendum — add an extra exercise:

Exercise 5.12 Show that the kinematic ray equations in general an-
isotropic media, (5.3.20) and (5.3.21), can be rewritten (Zhu, Gray and
Wang, 2005)

dx
dT

= V

dp
dT

= −∇ ln c.

Answer: In a recent abstract, Zhu, Gray and Wang (2005)† have de-
veloped an alternative expression for the kinematic ray equations in an-
isotropic media. Apart from being a simpler, more elegant and unifying
expression, it clarifies the dependence of the equations on the appropriate
parameters, and in media where the Christoffel equation can be solved
analytically, simplifies computations.

The kinematic ray equations (5.3.20) and (5.3.21) are

dxi

dT
=

∂H

∂pi

dpi

dT
= − ∂H

∂xi
,

where the Hamiltonian is given by (5.3.18)

H(x,p) =
1
2

aijklpipkĝj ĝl.

† Zhu, T., Gray, S. and Wang, D., 2005. Kinematic and dynamic raytracing in anisotropic media:
theory and application, SEG extended abstract , ANI 1.1, 96–9.
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The first equation is, of course, the definition of the ray (group) velocity
(5.3.23)

Vi =
∂H

∂pi
= aijklpkĝj ĝl,

but the second kinematic ray equation involves spatial derivatives of the
density normalized elastic parameters, aijkl (5.3.21). But the Hamiltonian
and its spatial derivative are homogeneous of degree 2 in the slowness, i.e.

H(x,p) =
1

c2(x, p̂)
H(x, p̂)

∂

∂xi
H(x,p) =

1
2

∂aijkl

∂xi
pjpmĝkĝl =

1
c2(x, p̂)

∂

∂xi
H(x, p̂).

As we have (5.3.19)

H(x,p) =
1
2
,

on the ray, we can combine these equations to give

∂

∂xi
H(x,p) =

1
c

∂c

∂xi
.

Thus the kinematic ray equations can be written

dx
dT

= V

dp
dT

= −∇ ln c.

These equations are completely analogous to the acoustic equations (5.1.14)
and (5.1.15). Note that the spatial derivatives of the phase velocity are
calculated for fixed phase direction, p̂.

These equations are a simple, unified way to write the kinematic ray
equations in anisotropic media. It appears that Zhu, Gray and Wang
(2005) are the first to write the second equation as above. The equations
indicate that the kinematic ray results only depend on the appropriate
parameters — the group velocity and phase velocity of the appropriate
ray type. In the original equation (5.3.21) this property is not obvious
as all elastic parameters appear to contribute. This result is important
in analyzing the sensitivity of travel times to media properties, i.e. in
tomography. It also means that in media where the group and phase ve-
locity can be found from simple analytic expressions, e.g. weak or normal
TI media (Exercises 4.3, 4.5 and Section 5.7.1), computations are more
straightforward and efficient
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Finally, the above results simplify the dynamic ray equations. The
matrix of the dynamic ray equations (5.2.20)

D =

(
TT R
− S − T

)
,

has elements

Tij =
∂2H

∂xi∂pj
=

∂Vj

∂xi

Rij =
∂2H

∂pi∂pj
=

∂Vi

∂pj

Sij =
∂2H

∂xi∂xj
=

∂2 ln c

∂xi∂xj
.

• Page 210: Addendum — Mid-page, add the paragraph:

For some purposes such as numerical computations, it is convenient to
scale the elements of the vector w, (6.1.1) and (6.1.2), and the matrix A,
(6.3.2) and (6.3.14). Dividing the pressure of stress components in the
vector w by a (constant) characteristic impedance, Z = ρc say, where
ρ and c are a characteristic density and velocity, all the elements of the
modified vector w have the dimensions of (transformed) velocity and the
elements of the modified matrix A have the dimensions of slowness. The
same scaling is appropriate to unify the dimensions of the elements of the
vector w and matrix A in the differential systems discussed in Chapter 7.

• Page 217: Erratum — Although the combination of equations (6.3.52)
and (6.3.56) is correct, they are inconsistent with the statement in paren-
theses following equation (6.3.56). To make them consistent they should
be modified to read

W22 = W25 = w2 /β

W52 = − W55 = − w2µ qβ /β
(6.3.52)

and

w2 = 1/(2 ρ qβ)1/2. (6.3.56)
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• Page 219: Erratum — equation (6.3.64) has an incorrect right paren-
thesis in element A31. The correct equation is

A =



0 0 − p

0 0 0
− pC13/C33 0 0

p2
(
C11 − C2

13/C33
)
− ρ 0 0

0 p2C66 − ρ 0
0 0 − ρ

. . .

. . .

− 1/C44 0 0
0 − 1/C44 0
0 0 − 1/C33

0 0 − pC13/C33

0 0 0
− p 0 0


.(6.3.64)

• Page 245: Erratum — the subscripts in the fraction in the final expres-
sion in equation (6.8.8) should be reversed. It should read

gj →

√
S(�)

j√
S(�)

i

Tij gi =

√
(V̂ · n̂) j√
(V̂ · n̂) i

Tij gi. (6.8.8)

Revision — with hindsight, it would have been sensible to distinguish,
say with a superscript, the energy-normalized polarizations in the Green
function (5.4.33)

gG(x,L) = (2ρV )−1/2ĝ, (5.4.33)

from the energy-normalized polarizations in the plane-wave eigen-solutions
(6.3.26) and (6.3.29)

gE(p) = (2ρVn)−1/2ĝ. (6.3.29)

Equation (6.8.5) then is

gE
j → Tij gE

i , (6.8.5)

and equation (6.8.8)

gG
j →

√
S(�)

j√
S(�)

i

Tij gG
i =

√
(V̂ · n̂)j√
(V̂ · n̂)i

Tij gG
i . (6.8.8)

These are immediately equivalent noting that the expression in equation
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(6.8.4) √
(ρVn)j√
(ρVn)i

Tij,

is the coefficient with respect to unit displacement.

• Page 246 and Solutions page 77: Erratum — routine TidyEigen given in
the Solutions of Exercises for Exercise 6.1 contained a typo. On line 148 of
the routine (line 13 on page 87 of the Solutions of Exercises), the variable
nCP should have been nCp.
Addendum — this exercise could useful have included Further reading
on the subject of identifying the up- and down-going eigenvectors (Colin
Thomson, personal communication). In the code given in the answers
to the exercises, the routine TidyEigen uses the normal component of
the group velocity Vn to discriminate the propagation direction of the
eigenvectors. Burridge (1970, Section 5)† and van der Hijden (1987, Sec-
tion 6.3) discuss an alternative method based on the analytic continuation
of the slowness eigenvalues, pn. They give detailed arguments concerning
the Riemann surfaces and singularities of the function pn(p⊥) — here we
just summarize the more important results using our notation.

We assume that the coordinate system has been rotated into an interface
basis, e.g. equations (6.0.1) and (6.0.2), so that the slowness component
normal to the interface is p3 = pn. We consider a general cross-section of
the slowness surfaces defined by an angle χ such that

p1 = p cos χ

p2 = p sin χ.

In the interfaces basis (6.0.1), χ = 0 but in general we consider any real
angle. Note that p = |p⊥| is not to be confused with p = |p|. For fixed χ,
we study the six solutions pn

3 (p) with n = ±1, ±2 and ±3. The solutions
pn
3 (p) can be found by solving the Christoffel equation (5.3.17) or the

eigenvalue equation (6.3.14) (both leading to a sixth-order polynomial
with six solutions). Our task is to associate the solutions with positive n

with waves propagating in the positive x3 direction, and vice versa.
The positive definite, strain energy function (4.4.32) means that the

cross-section of the slowness surfaces (χ fixed) consists of three nested
ovals (an oval is topologically like a circle but not necessarily convex)

† Burridge, R., 1970. The directions in which Rayleigh waves may be propagated on crystals, Q.
J. Mech. Appl. Math., 23, 217–24.
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enclosing the origin. Note that the curves have point symmetry through
the origin (as slowness terms are all second order in equation (5.3.17)).
We label the curves Oj , j = 1, 2 and 3 in order of decreasing slowness
(corresponding to the ordering used in the text for the eigenvectors W).
Note that in general, the index n of the solutions does not correspond to
the index j of the oval — one oval may have multiple solutions. The curves
have branch points at p = ±ξm where dp3/dp = ±∞, again ordered in
decreasing order with m = 1 to M . In the simplest cases, e.g. isotropy,
the oval and branch point indices, j and m, correspond, but in general
M ≥ 3 and they do not. This is illustrate in Figure 6-I for α-quartz as
used in Figure 5.8 in the main text (p. 168) where M = 5 (in this example
χ = π/2).

This figure was produced using the code

function Exercise61a
% Exercise 6.1a
% added to Addenda and Errata, 15 November 2004
% C12 corrected from c13 to c12 (note figures do not
% alter significantly), 17 May 2007
%
% slowness surfaces for trigonal alpha-quartz as used in
% Figure 5.8 (see Figure 10.2.1 in Musgrave, 1970).
% Shearer, P.M. and Chapman, C.H., 1988.
% Ray tracing in anisotropic media with a linear gradient,
% Geophys. J., 94, 575-580.
% Bechmann, R., 1958. Elastic and piezoelectric constants
% of alpha-quartz, Phys. Rev., 110, 1060-1061.
% Musgrave (1970, p. 130 and 282, density ~ 2.67 and
% axis in Figure 10.2.1 (i) is reversed)
% Density normalized so units km^2 s^-2
%
c11 = 32.73; % from Shearer and Chapman (1988)
c33 = 40.45;
c12 = 2.64;
c13 = 4.49;
c44 = 21.86;
c14 = -6.76; % sign as Bechmann not Musgrave
%
quartz=struct( ...
’C11’,c11,’C12’,c12,’C13’,c13,’C14’, c14,’C15’, 0,’C16’,0,...

’C22’,c11,’C23’,c13,’C24’,-c14,’C25’, 0,’C26’,0,...
’C33’,c11,’C34’, 0,’C35’, 0,’C36’,0,...

’C44’, c44,’C45’, 0,’C46’,0,...
’C55’,c44,’C56’,c14,...

’C66’,.5*(c11-c12));
%
cjk = cMatrices( quartz );
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O1

O2

O3

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

0.1 0.2 0.3

p3

p
ξ1ξ2

ξ3ξ4

ξ5

Fig. 6-I. Similar to Figure 5.8 but illustrating the branch points. The p2 – p3 cross-
section of the three slowness surfaces Oj for α-quartz (χ = π/2 in this cross-section)
for p ≥ 0 is shown. The figure is based on the elastic constants from Bechmann
(1958) as used by Shearer and Chapman (1988, p. 579). See also Figure 10.2.1(i)
in Musgrave (1970). Branch points at p = ξm with m = 1 to 5 are indicated.

% modified from Exercise 5.9
for j=1:181

theta=(j-91)*pi/180;
ct = cos(theta);
st = sin(theta);
direction = [ 0 ct st ]’; % Figure 10.2.1 (i)

% direction = [ ct 0 st ]’; % Figure 10.2.1 (ii)
% direction = [ ct st 0 ]’; % Figure 10.2.1 (iii)
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[ PhaseSlow, GroupVel, Polar ] = ...
AnisoSurfaces( direction , cjk );

sx1(j) = ct*PhaseSlow(1);
sz1(j) = st*PhaseSlow(1);
sx2(j) = ct*PhaseSlow(2);
sz2(j) = st*PhaseSlow(2);
sx3(j) = ct*PhaseSlow(3);
sz3(j) = st*PhaseSlow(3);

end
figure
hold on
plot( sx1, sz1, ’b’ )
plot( sx2, sz2, ’r’ )
plot( sx3, sz3, ’k’ )
% units are km/s
axis ([0 .35 -.35 .35])
axis equal
axis manual
print -depsc2 exercise6_1a.eps
return

which uses the routine AnisoSurfaces given in the Solutions to Exercises
for Exercise 5.9.

At a branch point, two solutions pn
3 coincide. As the product of all

eigenvalues is the determinant of the matrix A (6.3.14), differentiating
with respect to p, it is clear that for one solution dpn

3/dp = +∞, while
for the other dp−ñ

3 /dp = −∞ (with n and ñ having the same sign), i.e.
the two solutions have indices of opposite sign — near the branch point,
the propagation direction has the opposite sign to the gradient — but
not necessarily the same value. For −ξM < p < ξM between the branch
points and the origin, a line p = constant must intersect each oval in
two points, as there must be six solutions. At p = 0, there will be three
positive-negative pairs of solutions for p3(p) (from the point symmetry,
or the quadratic nature of the Christoffel equation). The propagation
direction is the same as the sign of the solution, i.e.

p−1
3 (0) ≤ p−2

3 (0) ≤ p−3
3 (0) < 0 < p3

3(0) ≤ p2
2(0) ≤ p1

3(0).

Let us define

p̄i = pi/p,

so p̄1 = cos χ and p̄2 = sin χ are real. Suppose p is positive imaginary.
It is obvious that p3(p) cannot be purely real or imaginary but must be
complex. If Im(p) > 0, then Im(p̄+n

3 ) < 0 and Im(p̄−n
3 ) > 0 (n positive),

and vice versa when Im(p) < 0. Im(p̄±n
3 ) differ in sign unless Im(p) = 0.



13

p3 plane

p+n
3

ξk

p−ñ
3

p3

pp+n
3

p−ñ
3

V+n

V−ñ

p3(ξk)

p3(ξk)

Fig. 6-II. The behaviour of the slowness p near a branch point: on the left, the
solutions in the complex p3 plane as p increases past a branch point at ξk; and
on the right, the slowness surface p3(p) near the branch point p3(p = ξk). In both
figures, the solution propagating in the negative direction is indicated with a dashed
line.

Let us consider a branch cut at p = ξm on the real axis, where two solu-
tions p+n

3 and p−ñ
3 coalesce and are real for p > ξk (n and ñ are positive

but not necessarily equal) as illustrated in Figure 6-II. Consider p with a
small, positive imaginary part passing the branch point. For Re(p) < ξk,
Im(p+n

3 ) < 0 and Im(p−ñ
3 ) > 0. As p passes the branch point, these solu-

tions approach the real axis at p3(ξk). As p passes the branch point on
the left, the solutions for p3 turn to the left. Hence Re(p+n

3 ) < p3(ξk)
and decreases, while Re(p−ñ

3 ) > p3(ξk) and increases. As dp+n
3 /dp < 0

it continues as the solution propagating in the positive direction, and
dp−ñ

3 /dp > 0 continues in the negative direction (as these gradients define
the direction of the group velocity vector, V). This behaviour is illus-
trated in Figure 6-II. A similar argument applies at branch cuts when the
solutions are real for p < ξk.

Burridge (1970) and van der Hijden (1987) have discussed in some detail
the possible singularities of p3(p). Only the branch points on the real axis
are significant, so we have omitted other details.

Thus as Im(p̄±n
3 ) differ in sign unless Im(p) = 0, analytic continuity of

the solutions from p = 0 (where they are clearly identifiable), allows us to
identify the solutions if Im(p) �= 0. Taking Im(p) > 0 and small, we can
identify the positive and negative propagating solutions with Im(p+n

3 ) < 0
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and Im(p−ñ
3 ) > 0, respectively. A simple modification of the code and

figure given above illustrates the algorithm. The code becomes

function Exercise61b
% Exercise 6.1b
% added to Addenda and Errata, 15 November 2004
% C12 corrected from c13 to c12 (note figures do not
% alter significantly), 17 May 2007
%
% illustrate algorithm for finding propagation direction
%
% slowness surfaces for trigonal alpha-quartz as used in
% Figure 5.8 (p_2 - p_3 crossection of slowness surface)
% Shearer, P.M. and Chapman, C.H., 1988.
% Ray tracing in anisotropic media with a linear gradient,
% Geophys. J., 94, 575-580.
% Bechmann, R., 1958. Elastic and piezoelectric constants
% of alpha-quartz, Phys. Rev., 110, 1060-1061.
% Musgrave (1970, p. 130, 136 and 282, density ~ 2.67 and
% axis in Figure 10.2.1 (i) is reversed)
% Density normalized so units km^2 s^-2
%
c11 = 32.73; % from Shearer and Chapman (1988)
c33 = 40.45;
c12 = 2.64;
c13 = 4.49;
c44 = 21.86;
c14 = -6.76; % sign as Bechmann not Musgrave
%
quartz=struct( ...
’C11’,c11,’C12’,c12,’C13’,c13,’C14’, c14,’C15’, 0,’C16’,0,...

’C22’,c11,’C23’,c13,’C24’,-c14,’C25’, 0,’C26’,0,...
’C33’,c11,’C34’, 0,’C35’, 0,’C36’,0,...

’C44’, c44,’C45’, 0,’C46’,0,...
’C55’,c44,’C56’,c14,...

’C66’,.5*(c11-c12));
%
cjk = cMatrices( quartz );
% modified from Exercise 5.9
figure
hold on
% loop over 3 slowness surfaces - blue, red and black
cols = [ ’b’ ’r’ ’k’ ];
for n=1:3

cnt = 0; % point counter
dir = +1; % direction indicators
% start from py = 0 which is always dir=+1
% lots of detail to accurately pick up reversals
for j=91:-.1:-91
theta=(j-1)*pi/180;
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ct = cos(theta);
st = sin(theta);
% Figure 10.2.1 (i) in Musgrave (1970)
direction = [ 0 ct st ]’;
% find n-th slowness surface
[ PhaseSlow, GroupVel, Polar ] = ...
AnisoSurfaces( direction , cjk );

py = ct*PhaseSlow(n);
pz = st*PhaseSlow(n);
% solve for p_z with slightly positive imaginary p_y
cp = complex( py, 1.e-8 );
[ oSlow, polarizations, tractions ] = ...
AnisoEigen( [ 0 cp ], 1, cjk );

[ c k ] = min(abs(oSlow-pz));
% change of propagation direction
% from positive to negative direction

if ( imag(oSlow(k)) > 0 && dir > 0 )
% plot positive direction with solid line
if ( cnt>0 ) plot( ppy(1:cnt), ppz(1:cnt), cols(n) ), end
dir = -1; cnt = 1;

% from negative to positive direction
elseif ( imag(oSlow(k)) < 0 && dir < 0 )
% plot negative direction with dashed line
plot( ppy(1:cnt), ppz(1:cnt), [ cols(n) ’--’ ] )
dir = +1; cnt = 1;

% continue in same direction
else
cnt =cnt+1;

end
ppy(cnt) = py;
ppz(cnt) = pz;

end
% finish
if ( dir > 0 )
plot( ppy(1:cnt), ppz(1:cnt), cols(n) )

else
plot( ppy(1:cnt), ppz(1:cnt), [ cols(n) ’--’ ] )

end
end
% units are km/s
axis ([0 .35 -.35 .35])
axis equal
axis manual
print -depsc2 exercise6_1b.eps
return

which uses routines AnisoSurfaces from Exercise 5.9 and AnisoEigen
from Exercise 6.1. Figure 6-III, a modification of Figure 6-I, illustrates
the results, indicating the solutions propagating in a positive direction by
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O1
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0.1

0

−0.1

−0.2

−0.3

0.1 0.2 0.3

p3

p

Fig. 6-III. As Figure 6-I but with the solutions propagating in a positive direction
indicated by a solid line, and the solutions propagating in a negative direction by
a dashed line. Note, in particular, the section with ξ4 < p < ξ3 propagating in the
positive direction.

solid lines, and the solutions propagating in a negative direction by dashed
lines. Note, in particular, the section with ξ4 < p < ξ3 propagating in the
positive direction with p3 < 0.

• Page 246: Addendum — add an extra exercise:

Exercise 6.4 In anisotropic media with up-down symmetry, e.g. iso-
tropic, TIV, orthorhombic or generally monoclinic, the eigen-system (6.3.14)
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must reduce to a third-order system for p2
n, i.e. the eigenvalues of equa-

tion (6.3.14) must occur in positive-negative pairs, symmetric about the
horizontal plane of symmetry. Obtain the third-order system, and demon-
strate that it gives the known results for isotropic and transversely iso-
tropic media (Section 5.7.1).

Answer:
In anisotropic elastic media with up-down symmetry, i.e. the slowness

surfaces are symmetric under reflection in the horizontal plane, say the x

- y plane, the eigen-system (6.3.14)

Aw = pnw,

must have some special structure. In particular, we expect the eigenvalues
to be positive and negative pairs, and the equation to reduce from sixth
order to a cubic in p2

n. Up-down symmetry applies in isotropic, TIV,
orthorhombic media and more generally in monoclinic anisotropic media.
It is necessary to solve the eigen-system for Snell’s law at interfaces, and
for ray tracing in 1D media, so analyzing the structure of the equations
in up-down symmetric media is important.

In monoclinic media with a horizontal, reflection symmetry plane, elas-
tic parameters where the vertical index appears an odd number of times
must be zero. Thus in the Voigt notation (4.4.13), the elastic parameter
6 × 6 matrix must be of the form

C =



C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 0 0
0 0 0 0 C55 0

C16 C26 C36 0 0 C66


.

Isotropic media (4.4.53) and TIV media (4.4.59) are obviously special
cases of a monoclinic medium. The 3 × 3 stiffness matrices cjk (4.4.39)
are

c11 =

 C11 C16 0
C16 C66 0
0 0 C55

 c22 =

 C66 C26 0
C26 C22 0
0 0 C44


c33 =

 C55 0 0
0 C44 0
0 0 C33

 c23 =

 0 0 C36

0 0 C23

0 C44 0
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c31 =

 0 0 C55

0 0 0
C13 C36 0

 c12 =

 C16 C12 0
C66 C26 0
0 0 0

 .

The matrix A is constructed from these parameter matrices, and if it is
divided into four 3 × 3 sub-matrices Aµν

A =

(
A11 A12

A21 A22

)

we obtain (6.3.15), (6.3.16) and (6.3.17)

A22 = AT
11 = − pηcη3c−1

33

A12 = − c−1
33

A21 = pηpνcην − ρ I − pηpνcη3c−1
33 c3ν , (6.8.9)

with summations over indices 1 and 2. Thus in monoclinic media we have

A12 = −

 1/C55 0 0
0 1/C44 0
0 0 1/C33


A22 = AT

11 = −

 0 0 (p1C13 + p2C36)/C33

0 0 (p1C36 + p2C23)/C33

p1 p2 0

 .

Matrix A21 has many more terms but is constructed from matrices I, c11,
c22, c12 and

c13c−1
33 c31 =

 C2
13/C33 C13C36/C33 0

C13C36/C33 C2
36/C33 0

0 0 C55


c23c−1

33 c32 =

 C2
36/C33 C23C36/C33 0

C23C36/C33 C2
23/C33 0

0 0 C44


c13c−1

33 c32 =
(
c23c−1

33 c31

)T

=

 C13C36/C33 C13C23/C33 0
C2

36/C33 C23C36/C33 0
0 0 0

 .

The important thing is that although there are lots of terms, all these
matrices and therefore A21 are of the form

A21 =

 × × 0
× × 0
0 0 ×

 ,
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where the cross indicates a non-zero element. Overall the matrix A has
the form

A =



0 0 × × 0 0
0 0 × 0 × 0
× × 0 0 0 ×
× × 0 0 0 ×
× × 0 0 0 ×
0 0 × × × 0


.

Noting where the zero elements are, we interchange the third and sixth
rows and columns in the eigen-system, corresponding to v3 and σ33, which
can be achieved by pre- and post-multiplying by the matrix

I36 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0


,

and obtain a modified eigen-system

A′w′ = pnw′,

where

A′ = I36AI36 =

(
0 A′

12

A′
21 0

)
,

with the diagonal 3 × 3 blocks zero, and

w′ = I36w =



v1

v2

σ33

σ13

σ23

v3


=

(
w′

1

w′
2

)
, say.

The sub-matrices are

A′
12 =

 A14 A15 A13

A24 A25 A23

A64 A65 A63


A′

21 =

 A41 A42 A46

A51 A52 A56

A31 A32 A36

 .
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The eigen-system can be expanded as

A′
12w

′
2 = pnw′

1

A′
21w

′
1 = pnw′

2,

and hence (
A′

12A
′
21

)
w′

1 = p2
nw

′
1(

A′
21A

′
12

)
w′

2 = p2
nw

′
2.

These two eigen-systems are equivalent as both A′
12 and A′

21 are sym-
metric (as A15 = A24 = 0, A42 = A51 from elements of matrix A21, and
A13 = A64, A23 = A65, A46 = A31 and A56 = A32 as A22 = AT

11). The
matrix A′

12A
′
21 has right-eigenvector w′

1 and left-eigenvector w′
2; for the

matrix A′
12A

′
21, the roles of the eigenvectors are reversed.

Thus we have reduced the sixth-order eigen-system to a third-order
system for the eigenvalues p2

n. Hence, the original eigenvalues must be in
positive and negative pairs. In the eigenvectors, w′, the second part, w′

2,
changes sign with pn. These results agree with the physical requirements
in media with up-down symmetry. There is always a sign ambiguity in the
definition of eigenvectors. The signs can always be chosen to be consistent
with the above rule that w′

1 does not change sign but w′
2 changes sign

with pn. Note that the signs in definitions (6.3.5), (6.3.51), (6.3.52) and
(6.3.53) are consistent with this rule.
Isotropic case (2 parameters): The matrix A in an isotropic medium
is given by equation (6.3.47). Thus the sub-matrices are

A′
12 = −

 1/µ 0 p

0 1/µ 0
p 0 ρ


A′

21 =

 ηp2 − ρ 0 −pλ/(λ + 2µ)
0 µp2 − ρ 0

−pλ/(λ + 2µ) 0 −1/(λ + 2µ)

 ,

where η is defined in equation (6.3.48). The 3×3 matrix for the eignevalues
p2

n is

A′
12A

′
21 =


ρ
µ − 3λ+4µ

λ+2µ p2 0 λ+µ
µ(λ+2µ)p

0 ρ
µ − p2 0

2p
(
ρ − 2µp2

) λ+µ
λ+2µ 0 ρ+λp2

λ+2µ

 .

Although the SH eigenvalue is obvious, the P-SV result is not obvious
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but straightforward algebra shows∣∣∣A′
12A

′
21 − p2

nI
∣∣∣ = (

ρ

µ
− p2 − p2

n

)2 ( ρ

λ + 2µ
− p2 − p2

n

)
= 0,

giving the expected eigenvalues.
TIV case (5 parameters): From the matrix A (6.3.64), the sub-
matrices are

A′
12 = −

 1/C44 0 p

0 1/C44 0
p 0 ρ


A′

21 =

 p2(C11 − C2
13/C33) − ρ 0 −p C13/C33

0 p2 C66 − ρ 0
−p C13/C33 0 −1/C33

 .

The eigen-matrix is

A′
12A

′
21 =

ρ
C44

+ p2 C2
13+C13C44−C11C33

C33C44
0 p C13+C44

C33C44

0 ρ
C44

− p2 C66
C44

0

p3 C2
13−C11C33

C33
+ ρp C13+C33

C33
0 ρ

C33
+ p2 C13

C33

 .

After some algebra, the eigenvalue equation can be reduced to∣∣∣A′
12A

′
21 − p2

n I
∣∣∣ =

1
A33A44

(
1

A44
− p2 A66

A44
− p2

n

) [
A33A44p

4
n − Bp2

n + (A11p
2 − 1)(A44p

2 − 1)
]
,

where B is defined by equation (5.7.33) with (5.7.31) and (5.7.20), and
just here Aij = Cij/ρ are the density-normalized elastic parameters not
elements of the matrix A. Clearly the qSH root agrees with result (5.7.24),
and the qP-qSV roots from the quadratic for p2

n agree with solutions
(5.7.32).
monoclinic (12 parameters): We discuss the general monoclinic sys-
tem next with 12 parameters, as in the simpler orthorhombic medium
only 3 more parameters are zero. The general 3 × 3 matrices of elastic
parameters (4.4.39) have been given above. The sub-matrices A11 and
A22 (6.3.15) and A12 (6.3.16) of the matrix A have been given above and
the elements of the sub-matrix A21 (6.3.17) are

A41 = p2
1(C11 − C2

13/C33) + p2
2(C66 − C2

36/C33)

+ 2p1p2(C16 − C13C36/C33) − ρ
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A52 = p2
1(C66 − C2

36/C33) + p2
2(C22 − C2

23/C33)

+ 2p1p2(C26 − C23C36/C33) − ρ

A63 = − ρ

A51 = A42 = p2
1(C16 − C13C36/C33) + p2

2(C26 − C23C36/C33)

+ p1p2(C12 + C66 − C13C23/C33 − C2
36/C33)

A61 = A62 = A43 = A53 = 0.

The matrices of the third-order system are

A′
12 = −

 1/C55 0 p1

0 1/C44 p2

p1 p2 ρ


A′

21 = A41 A51 − (p1C13 + p2C36)/C33

A51 A52 − (p1C36 + p2C23)/C33

− (p1C13 + p2C36)/C33 − (p1C36 + p2C23)/C33 − 1/ρ

 ,

where the 3 long elements in the upper-left 2× 2 have not been repeated.
It is easily checked that these results reduce to the isotropic and TIV
results.

To find the eigenvalues of the third-order system we need to expand
and solve ∣∣∣A′

12A
′
21 − p2

n I
∣∣∣ = 0.

This reduces to a cubic, but having found the matrices A′
12 and A′

21 alge-
braically there is little point in proceeding further as the algebra does not
simplify. It is straightforward to find the coefficients of the cubic numeri-
cally. An analytic solution is available for a cubic. Although this used to
be textbook stuff, it is perhaps less well known now. The procedure is:

consider the cubic in its standard form

x3 + px2 + qx + r = 0.

This can be reduced to

y3 + 3Qy − 2R = 0,

where

y = x +
p

3

3Q = q − 1
3
p2
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2R =
p

3

(
q − 2p2

9

)
− r.

We define a discriminant

D = Q3 + R2.

If D > 0, there is one real root, and if D ≤ 0 there are three real roots
(multiple roots if D = 0). The following algorithms require the special
case of a triple root when Q = R = 0, and y1 = y2 = y3 = 0, to be
handled separately.

If D > 0 we make the transformation

y = 2Q1/2 sinh
θ

3
,

and the cubic reduces to

sinh θ =
R

Q3/2
.

The standard logarithmic formula for the inverse hyperbolic sine gives

θ

3
= ln

S

Q1/2
,

where

S =
(
R +

√
D
)1/3

.

Substituting, this gives the root

y1 = S + T,

where

T = − Q/S =
(
R −

√
D
)1/3

.

If R < 0 it is best to calculate T first and derive S from it.
If D < 0, then we make the transformation

y = 2( − Q)1/2 cos
θ

3
,

and the cubic reduces to

cos θ =
R

( − Q)3/2
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(necessarily Q < 0). The solutions are

y1 = 2
√

− Q cos
θ

3

y1 = 2
√

− Q cos
(

θ

3
+

2π
3

)
y1 = 2

√
− Q cos

(
θ

3
+

4π
3

)
.

orthorhombic case (9 parameters): An orthorhombic medium is char-
acterized by a stiffness Voigt matrix

C =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66


(Schoenberg and Helbig, 1997†, and references therein). This results in
some simplification of the monoclinic results above, but in general it is
probably best to proceed numerically from the matrices A′

12 and A′
21 to

the solution of the cubic. Only if p1 = 0 or p2 = 0, i.e. on a plane of
symmetry, do the results simplify significantly. Then the form simplifies
to that in TIV media, and the solution reduces to a simple equation for
the qS wave transverse to the symmetry plane, and a quadratic equation
for the qP-qS waves in the symmetry plane.

• Page 250: Erratum — the text and equations on page 250 are confused.
Apart from sign errors, differential equations for v and w have got mixed
up. The page should read:

Transforming, the equation of motion (4.5.1) becomes

− iωρ(z)v = −
(

iωp

∂/∂z

)
P −ASPS(ω)

(
iωp δ(z − zS)

δ′(z − zS)

)
, (7.1.13)

cf. equation (7.1.1). Equivalent to equation (7.1.4), we have

d
dz

w = iωAw − ASPS(ω)

(
iωp2 δ(z − zS)/ρ

−δ′(z − zS)

)
. (7.1.14)

If the source is in a homogeneous region and anticipating the fundamental

† Schoenberg, M. and Helbig, K., 1997. Orthorhombic media: modelling elastic wave behavior
in a vertically fractured earth, Geophysics, 62, 1954–74.
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solution (7.2.2) (so δ′(z − zS) → ±iωqαδ(z − zS) for the plane-wave so-
lutions propagating in the positive and negative directions), the response
for a pressure line source can be obtained from the Green function by
post-multiplying the solution by a ‘force’ factor

f = − iωASPS(ω)

(
p

± qα

)
, (7.1.15)

i.e. the combination FFF f δ(z − zS) in equation (7.1.4) is equivalent to the
source term in equation (7.1.14) (as expected, a ‘force’ in the direction of
the wave normal). In the time domain, the Green function is convolved
with ASP ′

S(t) and the pressure source is represented by the ‘force’ factor

f =

(
p

± qα

)
ASP

′
S(t)∗ = −

(
p

± qα

)
MS, (7.1.16)

where the final expression corresponds to the moment tensor source (4.6.7)
with (4.6.21).

The sign errors do not persist on later pages.

• Page 285, equation (7.2.129) Addendum — in equation (7.2.129), the
sign of the increments is ambiguous. The sentence is better rewritten:
For from equation (6.3.7) (with the increments taken in the positive z

direction)

T11 = − T22 =
ρ2qα 1 − ρ1qα 2

ρ2qα 1 + ρ1qα 2
	 δ(qα/ρ)

2qα/ρ
	 γA δζ. (7.2.129)

• Page 292: Erratum — in equation (7.2.164), the rows of matrix L are
interchanged. It should read

L = (µp)−1/2

(
0 1
µp 0

)
. (7.2.164)

As a consequence, equation (7.2.165) has a sign error and should be

dy
dz

= iω By +
µ′

2µ
I3. (7.2.165)

• Page 297: Erratum — between equations (7.2.190) and (7.2.191), the
order of the expressions is reversed. It should read “ . . . (2p/q β )1/2 and
(2p/qα )1/2, respectively, . . . ”.
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• Pages 299 to 308: Revision — the algorithm is revised to use the trav-
elling rather than standing-wave solution. This improves the numerical
behaviour and avoids overflow. The text has been revised to reflect this
and simplified by omitting some details. On page 209, following equation
(7.2.202), the revised text reads

with d = zA − zB, the layer thickness. XV and XP are defined with the
appropriate vertical slowness, qV or qP , and gV or gP , respectively. For
numerical purposes, it is better to factor the propagator using the trav-
elling wave solutions as in evanescent regions these remain independent.
The eigenvalues of the matrix (7.2.176) are ±qν , and the eigenvectors can
be written as a 2 × 2 matrix

Yν = 2−1/2

(
1/hν − 1/hν

− hν − hν

)
, (7.2.203)

i.e. BνYν = Yνpν , cf. equation (6.3.3), where for convenience we have
defined h2

ν = − gν . It is then easily shown that for (7.2.198)

L(YV ⊕ YP ) = W


1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

 = WI§ = W§, (7.2.204)

say, where W is defined in equations (6.3.51) and (6.3.53), reduced to the
4 × 4 P – SV system. The interchange of the second and third columns
of W in W§ is necessary to group the SV and P solutions and obtain
the block diagonal form Y = YV ⊕ YP . The sign change of the third
column of W, the SV solution propagating in the negative direction, is
necessary to obtain the sign change in the elements of W§ containing qV

(in (6.3.51), the other elements change sign in order to emphasize the
up/down symmetry, see Exercise 6.4). Similar but simpler expressions to
(7.2.204) hold for acoustic waves ((6.3.5) and (7.2.132)) and SH waves
((6.3.52) and (7.2.164)).

With the factorization (7.2.204), the Haskell matrix (7.2.4) (the prop-
agator in a homogeneous layer) can be written

P(z, z0) = LYei ωp§
z(z−z0)Y−1L−1, (7.2.205)

where

Y = YV ⊕ YP = (YV ⊕ I)(I ⊕ YP ), (7.2.206)
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the inverse matrices are simply

Y−1
ν = 2−1/2

(
hν − 1/hν

− hν − 1/hν

)
, (7.2.207)

and the transformation matrix in equation (7.2.204), I§, simply alters the
order of the eignevalues in the diagonal matrix, i.e.

p§
z = pV ⊕ pP =


qV 0 0 0
0 −qV 0 0
0 0 qP 0
0 0 0 −qP

 , (7.2.208)

compared with (7.2.4). Similar but simpler expressions apply for the
acoustic and SH Haskell matrices.

Pages 300 to 303 are unaltered except that the equation numbers are
increased by 4. Pages 304 to 308 are revised to

Result (7.2.220) applies however the propagator is obtained. With the
Langer decomposition (7.2.205) , it is particularly simple as the matrices
(7.2.187), (7.2.188) and (7.2.206) have been factorized, and the individual
matrices contain many zero, unit or equal elements. Thus the main term
from the stack of layers is

Z = { ei ωp§
1d1 } {Y−1

1 } {L−1
1 }

×

n−1∏
j=2

{Lj} {Yj} { ei ωp§
jdj } {Y−1

j } {L−1
j }

 {Ln} {Yn} ,

(7.2.221)

where

{P} = {W−1
1 L1 Y1 }Z{Y−1

n L−1
n Wn}. (7.2.222)

As

{W−1LY} = {I§} =



0 1 0 0 0 0
−1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 −1 0


, (7.2.223)
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from equation (7.2.204), equation (7.2.220) can be rewritten as

Rn 2 = − 1
Z55

(
Z35 Z15

Z65 −Z45

)
. (7.2.224)

Even for a single interface (n = 2), this reduces to a simple algorithm for
the interface coefficients with

Z = {Y−1
1 } {L−1

1 }{L2} {Y2} . (7.2.225)

With expression (7.2.225) substituted in result (7.2.224) we obtain results
equal to the standard interface coefficients (e.g. equations (6.3.60)–(6.3.62)
for the isotropic coefficients) but with a relatively simple algorithm.

With the Langer block-diagonal decomposition (7.2.201) and factor-
ization (7.2.187), (7.2.188) and (7.2.206) , the second-order minors are
particularly simple to compute. Ignoring the trailing diagonal matrix in
expression (7.2.187), which simply forms a diagonal matrix of second-order
minors and reduces to a simple scaling , we have

{L} .=



1 0 0 0 1 0
− ZP 0 0 0 − ZV 0

0 0 0 − 1 0 0
0 0 ZV − ZP 0 0 0
0 1 0 0 0 1
0 − ZP 0 0 0 − ZV



×



1 0 0 0 1 0
− ZV 0 0 0 − ZP 0

0 0 0 − 1 0 0
0 0 ZP − ZV 0 0 0
0 1 0 0 0 1
0 − ZV 0 0 0 − ZP


(7.2.226)

(where the symbol .= is used to indicate that the unimportant, diagonal
matrix is missing). Multiplication by the matrix {L} can be performed
by the repeated applications of the sub-matrix(

1 1
− ZP − ZV

)
, (7.2.227)

with the appropriate row and column indices. A similar, simple expres-
sion is obtaining for the inverse matrix from expression (7.2.188), again
ignoring the leading diagonal matrix.
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For the matrices Y, we can ignore the factors 2−1/2 as they simply scale
the solution, and with the factorization (7.2.206) the second-order minor
expression is

{YV ⊕ I} .=



−2 0 0 0 0 0
0 1/hν 0 −1/hν 0 0
0 0 1/hν 0 −1/hν 0
0 −hν 0 −hν 0 0
0 0 −hν 0 −hν 0
0 0 0 0 0 1


, (7.2.228)

and similarly for {I ⊕ YP}.
For the phase term we obtain

{ei ωp§
z} =



1 0 0 0 0 0
0 eV eP 0 0 0 0
0 0 eV /eP 0 0 0
0 0 0 eP /eV 0 0
0 0 0 0 1/eV eP 0
0 0 0 0 0 1


, (7.2.229)

where eν = exp(iωqνd), although computationally we replace the matrix
(7.2.229) by eV eP {ei ωp§

z} to avoid overflow.
The algorithm is so straightforward that a Matlab program has been

included in Chapman (2003) for the isotropic case, although that con-
tained a sign error (Chapman, 2005) and used the standing-wave solution
(7.2.201) so numerical overflow could occur . Multiplications of the six-
dimensional vector by the matrices of second-order minors in (7.2.221) is
performed using the factorizations (7.2.226) for L, and (7.2.228) for Y,
and similarly for the inverses, etc. Clearly because of their repetitive na-
ture, these operations will be extremely simple and efficient to code and
compute. A complete algorithm would need to handle some special cases:
p = 0, µ = 0 or q = 0. The method is best described as the factorized
Haskell (second-order minor) matrix method.

The revised version of the routine Rcoefficients, given in Exercise 7.6
is

function [ Rvv, Rpv, Rvp, Rpp ] = ...
Rcoefficients( mat, p, omegas, properties )

% Rcoefficients - P-SV reflection coefficients from layer
% stack using algorithm in Section 7.2.8

% INPUT:
% mat = ’Iso’ use Iso_PSV_EigenFactors
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% = ’TIV’ use TIV_PSV_EigenFactors
% p = horizontal slowness
% omegas = circular frequencies
%
% if mat = ’Iso’:
% properties(i).Alpha = P velocities
% properties(i).Beta = S velocities
%
% if mat = ’TIV’:
% properties(i).C11 = C11 stiffness
% properties(i).C33 = C33 stiffness
% properties(i).C44 = C44 stiffness
% properties(i).C13 = C13 stiffness
%
% properties(i).Rho = densities
% properties(i).Thick = layer thickness
%
% coefficients are properties(1).Thick above
% interface and properties(nLayers).Thick is
% ignored
%
% stiffnesses may be frequency arrays for attenuation which
% should match omegas arrray. They must be row vectors
% e.g. 1 x nOmega.
%
% OUTPUT:
% Rvv = VV coeficient
% Rpv = PV coeficient (P incident)
% Rvp = VP coeficient (SV incident)
% Rpp = PP coeficient
%
% NOTE:
%
% properties(*).Alpha etc. must be scalars or nOmega arrays to
% include frequency-dependent velocities to model attenuation
% (the attenuation model is therefore created externally);
% in this simplified version -
% p=0, Beta=0, p*Alpha=1 or p*Beta=1 are not allowed;
% code is so simply we don’t use functions except for
% ’mat’_PSV_EigenFactors and LayerPhase;
% the code is written to allow for frequency arrays of velocity
% or not;
%
% As revised for Addenda and Errata, 25 November 2004
% Revised numerical normalization rather than analytic
% factor, 18 Dec 2005
% Revised to use travelling solutions, with revised
% arguments, 22 January 2007
%
nLayers = length(properties);
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nOmega = length(omegas);
%
% loop from bottom to top
for j = nLayers:-1:1

%
% eigenfactors of j-th layer
eval([ ’[qV,qP,ZV,ZP,gV,gP,sV,sP] = ’ ...

mat ’PSVEigenFactors(p,properties(j));’ ]);
%
% starting condition in lower half space,
% sixth column of Y^-1 L^-1 W - equation (7.2.223)
if j == nLayers
% force correct frequency array size
x1 = zeros(1,nOmega);
x2 = x1;
x3 = x1;
x4 = x1;
x5 = ones(1,nOmega);
x6 = x1;

%
% propagate through j-th layer
else
%
% multiply by L^-1
% temporary vector is (wa,wb,.,.,wc,wd)
% first matrix multiply
wa = ZV.*x1+x2;
wb = ZV.*x5+x6;
wc = -ZP.*x1-x2;
wd = -ZP.*x5-x6;
% second matrix multiply
x1 = -ZP.*wa-wb;
x2 = -ZP.*wc-wd;
x5 = ZV.*wa+wb;
x6 = ZV.*wc+wd;
% scale (minus sign in theory is not strictly necessary
% as it cancels with previous scaling in L for (j+1))
dZ = ZV-ZP;
x3 = dZ.*x3;
x4 = -dZ.*x4;
%
% multiply by Y^-1
% temporary vector is (.,wa,wb,wc,wd,.)
wa = x2+x3./gP;
wb = x3-x2.*gP;
wc = x4+x5./gP;
wd = x5-x4.*gP;
%
x2 = wa+wc./gV;
x3 = wb+wd./gV;
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x4 = wc-wa.*gV;
x5 = wd-wb.*gV;
%
x1 = 2*x1; x6 = 2*x6;
%
% multiply by exp(i omega q d) (avoid if only DC)
% equation (7.2.229)
if ( nOmega > 1 || omegas(1) ~= 0 )
thick = properties(j).Thick;
% P and SV phases
PposExp = LayerPhase(omegas,thick,qP);
VposExp = LayerPhase(omegas,thick,qV);
wa = PposExp.*VposExp;
% include phase with 1/(PposExp*VposExp) removed to
% avoid overflow
x1 = wa.*x1;
x2 = wa.*wa.*x2;
x3 = VposExp.*VposExp.*x3;
x4 = PposExp.*PposExp.*x4;
x6 = wa.*x6;

end
end
%
% end condition in first layer
if j == 1
%
% form coefficients
dZ = sqrt(gV.*gP);
Rvv = -gV.*x3./x5;
Rpv = dZ.*x1./x5;
Rvp = dZ.*x6./x5;
Rpp = gP.*x4./x5;

%
% recombine in j-th layer
else
% multiply by Y - equation (7.2.228)
% temporary vector is (.,wa,wb,wc,wd,.)
wa = x2-x3./gP;
wb = x3+x2.*gP;
wc = x4-x5./gP;
wd = x5+x4.*gP;
%
x2 = wa-wc./gV;
x3 = wb-wd./gV;
x4 = wc+wa.*gV;
x5 = wd+wb.*gV;
%
x1 = 2*x1; x6 = 2*x6;
%
% multiply by L - equation (7.2.226)
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% temporary vector is (wa,wb,.,.,wc,wd)
% first matrix multiply
wa = x1+x5;
wb = -ZV.*x1-ZP.*x5;
wc = x2+x6;
wd = -ZV.*x2-ZP.*x6;
% second matrix multiply
x1 = wc+wa;
x2 = -ZV.*wc-ZP.*wa;
x5 = wd+wb;
x6 = -ZV.*wd-ZP.*wb;
% scale
dZ = ZV-ZP;
x3 = dZ.*x3;
x4 = -dZ.*x4;
%
% Normalize solution independently at each frequency.
% Various factors are ommitted, and ZP and ZV may be
% large or small depending on p and units.
% Safest solution is to normalize numerically - sqrt
% postponed for efficiency.
wt = max( real(x1).^2+imag(x1).^2, ...

real(x2).^2+imag(x2).^2 );
wt = max( real(x3).^2+imag(x3).^2, wt );
wt = max( real(x4).^2+imag(x4).^2, wt );
wt = max( real(x5).^2+imag(x5).^2, wt );
wt = 1./sqrt(max( real(x6).^2+imag(x6).^2, wt ));
x1 = x1.*wt; x2 = x2.*wt; x3 = x3.*wt;
x4 = x4.*wt; x5 = x5.*wt; x6 = x6.*wt;

end
end
return

with revised routines

function [ qV, qP, ZV, ZP, gV, gP, sV, sP ] = ...
IsoPSVEigenFactors( p, properties )

% return eigen-factors for P and SV waves for isotropic medium

% For internal use in algorithm in Section 7.2.8
% For inelastic, vp and vs may be frequency arrays (for attenuation)
% and then q*, Z* and g* will be arrays (s* is scalar).
% For elastic, all are scalars.
% In calling program assumed that arrays match frequencies.
%
ro = properties.Rho;
vp = properties.Alpha;
vs = properties.Beta;
% vertical slownesses - equations (6.2.8) and (6.2.9)
qV = sqrt((1./vs-p).*(1./vs+p));
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qP = sqrt((1./vp-p).*(1./vp+p));
% cross-impedances - equations (7.2.193) and (7.2.194)
ZV = 2*ro*p*(vs.*vs);
ZP = ZV-ro/p;
% polarization (co)tangents - equations (7.2.191)
% and (7.2.192)
gV = -p./qV;
gP = -p./qP;
% scaling factors - equations (7.2.195)
sV = sqrt(p/ro);
sP = sV;
return

function [ qV, qP, ZV, ZP, gV, gP, sV, sP ] = ...
TIVPSVEigenFactors( p, properties )

% return eigen-factors for P and SV waves for TIV medium

% For internal use in algorithm in Section 7.2.8
% Stiffnesses are either scalars or frequency arrays (for
% attenuation).
% Assumption that all are same size so all internal
% variables will be same size.
%
A11 = properties.C11/properties.Rho;
A33 = properties.C33/properties.Rho;
A44 = properties.C44/properties.Rho;
A13 = properties.C13/properties.Rho;
%
ps = p*p;
% terms (5.7.20), (5.7.31) and (5.7.33)
aa = A13+A44;
AA = A11.*A33+A44.*A44-aa.*aa;
BB = A33+A44-ps*AA;
% equation (5.7.32) for the normal component of slowness
A34 =2*A33.*A44;
tmp = sqrt(BB.*BB-2*A34.*(A11*ps-1).*(A44*ps-1));
qVs = (BB+tmp)./A34;
qV = sqrt(qVs);
qPs = (BB-tmp)./A34;
qP = sqrt(qPs);
% qSV polarizations (5.7.35)
g1 = 2*p*aa.*qV;
tmp = (A33-A44).*qVs-ps*(A11-A44);
g3 = tmp-sqrt(tmp.*tmp+g1.*g1);
% normal component of group velocity (5.7.37)
V3 = qV.*(ps*AA+A34.*qVs-A33-A44)./ ...

(ps*(A11+A44)+(A33+A44).*qVs-2);
% energy normalize polarizations
gg = sqrt(g1.*g1+g3.*g3).*sqrt(2*properties.Rho*V3);
g1 = g1./gg;
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g3 = g3./gg;
% traction components (6.3.66)
t31 = -(p*g3+qV.*g1).*properties.C44;
t33 = -p*g1.*properties.C13-qV.*g3.*properties.C33;
%
ZV = t33./g1;
gV = g3./g1;
sV = sqrt(-2*g1.*g3);
% repeat for qP
g1 = 2*p*aa.*qP;
tmp = (A33-A44).*qPs-ps*(A11-A44);
g3 = tmp+sqrt(tmp.*tmp+g1.*g1);
V3 = qP.*(ps*AA+A34.*qPs-A33-A44)./ ...

(ps*(A11+A44)+(A33+A44).*qPs-2);
gg = sqrt(g1.*g1+g3.*g3).*sqrt(2*properties.Rho*V3);
g1 = g1./gg;
g3 = g3./gg;
t31 = -(p*g3+qP.*g1).*properties.C44;
t33 = -p*g1.*properties.C13-qP.*g3.*properties.C33;
ZP = t33./g1;
gP = -g1./g3;
sP = sqrt(2*g1.*g3);
return

function posExp = LayerPhase( omegas, thick, q )
% return exponential phase term

% For internal use in algorithm in Section 7.2.8 for
% terms in matrix exp(i omega q d) (as in equation (7.2.202)).
%
% NOTE:
% valid for q as frequency array and omegas uneven, but
% tries to use recursive formula.
%
% Im(q) > 0 so this may be exponentially small causing underflow
% and zero (but not overflow and Inf or NaN).
%
nOmega = length(omegas);
iq = i*q;
% if q is array, assumed to be frequency array so
% recursion cannot be used
if length(q) > 0

posExp = exp(thick*omegas.*iq);
else
% q scalar so try to use recursion formula

posExp(1) = exp(thick*omegas(1)*iq);
if ( nOmega > 1 )
for n = 2:1:nOmega
% compute delPosExp
% avoids recomputing for uniform distribution
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if n == 2
delO2 = omegas(2)-omegas(1);
delPosExp = exp(thick*delO2*iq);

else
delO1 = delO2;
delO2 = omegas(n)-omegas(n-1);
% assumes omegas monotonically increasing
% frequency increment NOT constant
if abs(delO1-delO2) > 1.e-6*(delO1+delO2)

delPosExp = exp(thick*delO2*iq);
end

end
%
posExp(n) = posExp(n-1)*delPosExp;

end
end

end
return

• Page 309: Revision — in Exercise 7.6, add “ . . . Chapman, 2003, which
should be revised according to Chapman, 2005, and the revised algorithm
given in the text ).”

• Page 309: Erratum — in Exercise 7.8, “Investigate the symplectic sym-
metry proportion . . . ” should read “Investigate the symplectic symmetry
properties . . . ”.

• Page 309: Revision — in Exercise 7.8, “. . . propagator . . . ” should read
“. . . propagator matrix . . . ”.

• Page 353: Addendum — on the second line of page 353 in Chapter 8, the
forward reference to Section 9.1.3 could usefully also refer to Section 9.2.6 .

• Page 376, Exercise 8.5 and Solutions page 135: Appendum — Exer-
cise 8.5 could have contained interesting Further reading.
Further reading: a related problem is the dispersion of gravity water waves
or tsunamis. Jeffreys and Jeffreys (1962, Section 17.09) † have given the
basic theory which gives rise to another Airy Phase (see Exercise 8.4).

This material for Further reading was written on 31 December 2004 on

† Jeffreys, H. and Jeffreys, B.S. 1962. Methods of Mathematical Physics, Cambridge: Cambridge
University Press.
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Fig. 8-I. The dispersion curve for gravity water waves, with the short and long
wavelength limits illustrated, and the derivation of the phase c and group v velocity
from this curve.

returning from Sri Lanka in the immediate aftermath of the Asian tsunami
disaster of 26 December 2004.

In terms of a dimensionless frequency, Ω = ω(d/g)1/2, where d is the
water depth and g the acceleration due to gravity, and dimensionless
wavenumber, K = kd, the dispersion relation for gravity water waves
on a flat ocean is

Ω2 = K tanh K.

This gives dimensionless phase and group velocities of

C = c(gd)−1/2 =
Ω
K

=
(

tanh K

K

)1/2

V = v(gd)−1/2 =
dΩ
dK

=
tanh K + Ksech2K

2Ω
,

respectively. The dispersion curves for these functions is shown in the
Figures 8-I and 8-II.

In fact for tsunami, we only need the long-wavelength limit, K � 1,
when the phase and group velocities can be approximated by the quadratic
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Fig. 8-II. The phase and group velocities for gravity water waves, derived from the
dispersion curve in Figure 8-I, with the long-wavelength approximations indicated.

term, i.e. for dimensionless velocities, these are

C 	 1 − K2/6

V 	 1 − K2/2,

respectively. Then a wavenumber integral can be evaluated using the Airy
function (D.2.9) to give the wave displacement in the form of the so-called
Jeffreys phase (Bullen and Bolt, 1963, p. 465)†

u =
∫ ∞

−∞
ei(ΩT−KX)dK 	

∫ ∞

−∞
eiK(T−X)−iK3T/6dK

=
2π

(T/2)1/3
Ai

(
X − T

(T/2)1/3

)
,

where T = t(g/d)1/2 is the dimensionless time variable, and X = x/d

the dimensionless range. For realistic values for the propagation to Sri
Lanka of d = 5 km and x = 2000 km, this gives X = 400. The limiting
phase and group velocities are C = V = 1 or c = v = 220 m/s, giving

† Bullen, K.E. and Bolt, B.A., 1985. An Introduction to the Theory of Seismology, 4th edn,
Cambridge: Cambridge University Press
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Fig. 8-III. The Jeffreys phase for X = 400.

an arrival time of T = 400 or t = 9000 s = 150 mins. A dimensional
time unit is 22.5 s, or 1 hour equals 160 units. Figure 8-III illustrates the
Jeffreys phase at this range. The important features of the Jeffreys phase,
caused by the stationarity of the velocity with respect to wavenumber and
frequency, are the slow decay with range, X−1/3, due to dispersion (this is
the decay due to second-order dispersion only, i.e. one-dimensional wave
propagation. Including the geometrical spreading in two dimensions, the
decay rate would be increased to X−5/6), the build up to an initial, large
wave and the slow amplitude decay and decreasing periods at later times.

Although the general form of this waveform corresponds to observations
in Sri Lanka, a major discrepancy exists in the period of the oscillations.
A small precursor wave observed could probably be modelled easily by
including a phase shift in the wavenumber integral. Periods of about
20 dimensionless units correspond to 7.5 mins, whereas observed periods
were significantly longer, e.g. 45 mins. This must have been caused by the
earthquake’s mechanism, large magnitude (M = 9 on the Richter scale)
and dimensions. Normally when a source propagates towards the observer,
the Doppler shift increases the frequency (decreases the pulse width),
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e.g. for a seismic waveforms. But the rupture velocity is supersonic with
respect to the tsunami velocity (2000 m/s compared with 220 m/s), so the
effect is different. Effectively an observer in Sri Lanka, in the direction
of the rupture propagation, sees tsunami waves from the last point of
rupture (the nearest point) first, and from the first point of rupture (the
furthest point) last. In fact the rupture velocity is so high (as it is in
rock), about ten times the tsunami velocity, that the direction of rupture
relative to the observation point is not very important. The tsunami from
the nearest point of rupture always arrives first, and from the furthest
last. For simple numerical calculations, we can assume that all the rupture
occurs instantaneously, i.e. an infinite rupture velocity. The pulse can be
broadened by the interference of waves generated all along the rupture.
This can be simulated by integrating the Jeffreys phase

u =
2π

(T/2)1/3

∫
w(x)Ai

(
x − T

(T/2)1/3

)
dx,

where w(x) is a weighting function indicating the source strength along
the rupture. Numerical experiments show that the resultant waveforms
are very sensitive to the width and form of this weighting function. Trials
have been made with triangular and boxcar weights of various widths.
If the weighting function is narrow (a few dimensionless units) the wave
shape is close to the Jeffreys phase, of course. With a greater width (say
20 units), the main change is that waves from the two ends of the rupture
of slightly different frequencies (because the frequencies in the Jeffreys
phase increase with propagation time), interfere and cause beats and a
more rapid decay. For long source widths (40 units and greater), the wave
begins to have approximately the form of the weighting function with re-
duced later oscillations (for large integration lengths, the Airy function in
the above integral looks more like a Dirac delta function). In reality, it is
unlikely that the high-frequency oscillations in the interference beats will
propagated coherently due to spatial variations of the source and ocean. If
these oscillations are removed, the remaining long-period oscillations from
the amplitude of the beats begin to approximate the observations better.
Although these numerical simulations are instructive, further numerical
experiments with such a simple model seem pointless given the sensitivity
of the final waveform to the source weighting function, and the undoubted
complexity of such a large earthquake. The varying water depth of the
actual ocean will cause further dispersion and focusing of energy. Full
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numerical simulations for realistic models of tsunami propagation are cal-
culated routinely.

• Page 456: Erratum — in the caption to Figure 9.38 (page 456), a minus
sign is missing in the exponent. It should read “The waveforms in the deep
shadow given by approximation (V1�1)−11/2Sh(3)

(
3(V1�1)− 3(t − T̃1)

)
(9.3.101)

with V1 = 1. The time axis is the reduced travel time, t = t− T̃1, and the
range axis is the reduced range, X = �1 = xR − X1.”

• Pages 478 and 480: Erratum — on page 478 and in the caption to
Figure 10.11 (page 480), the receiver coordinate should be yR = 0.05 km
(not yR = 0.005 km).

• Pages 490 to 494: Erratum — in equations (10.2.7), (10.2.18), (10.2.31),
(10.2.32) and (10.2.33), and in the text following the last equation, the
symbol BMN should not have a suffix 0.

• Equation (10.2.8) and pages 490 to 503: Revision — in defining BMN

in equation (10.2.8) and all the following usage it would have been more
consistent to use the symbol ∆BMN and to expand equation (10.2.8) to
read

∆BMN = ∆B (ĝM , ĝN ) = p̂j p̂k ĝT
M ∆ajk ĝN . (10.2.8)

• Pages 492–4, equations (10.2.21), (10.2.22), (10.2.27), (10.2.28) and
(10.2.33): Erratum — The text and equations (10.2.21) and (10.2.22)
are confused and should read (we have revised the notation as suggested
above):

Substituting in the perturbation equation (10.2.3) with I = 1 , we can
pre-multiply by ê 0T

1 or ê 0T

2 to obtain two simultaneous equations

cos φ (2c0∆c 1 − ∆ B11)− sin φ ∆ B12 = 0 (10.2.21)

− cos φ ∆ B21 + sin φ (2c0∆c 1 − ∆ B22) = 0, (10.2.22)

and similarly for I = 2 , where again we have taken the phase direction,
p̂, fixed and the elements ∆ Bην are defined using the vectors ê0

η, i.e.
∆Bην = ∆B(ê0

M , ê0
N ).

In order that in the rotated system

∆b = ∆B̃ =

(
∆b1 0
0 ∆b2

)
= Φ−1∆BΦ
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(see equations (10.2.26) and (10.2.55)), ∆b1 < ∆b2 as required (as in
equation (10.2.24)), the alternative solution of equation (10.2.29) should
be taken, i.e.

sinφ =
1√
2

(
1 +

∆B11 − ∆B22

B

)1/2

(10.2.27)

cos φ = − sgn(∆B12)√
2

(
1 − ∆B11 − ∆B22

B

)1/2

. (10.2.28)

Some subscripts in equation (10.2.33) are in error. The correct form is

g12 =
∆ B13 ∆ B 23

(∆ B11 − ∆ B22 )
(
c0
1
2 − c0

3
2
)

=
∆B13∆B23

2c0 (∆c1 − ∆c2)
(
c0
1
2 − c0

3
2
) , (10.2.33)

giving the first-order perturbation to the polarization provided ∆ B 11 �=
∆ B 22, i.e. provided the anisotropy removes the degeneracy ∆c1 �= ∆c2 .

• Page 515, equations (10.3.46) and (10.3.47): Erratum — The symbol
Λ should be Φ so the equations are

FA(ω,x;xS) = − f (�)(ω) Φ (ω,x,LS)∇P (0)(x,LS) (10.3.46)

ΘA(ω,x;xS) = − 1
iω

f (�)(ω) Φ (ω,x,LS)∇ · v(0)(x,LS).(10.3.47)

• Page 521: Erratum — equation (10.3.70) contains a sign error. It should
read

KKKB(x,LR,LS) =

v(0) T(x,LR) ρB(x)v(0)(x,LS)−P (0) T(x,LR) kB(x)P (0)(x,LS).

(10.3.70)

The error does not persist and equation (10.3.72) is correct.

• Page 522: Erratum — the time derivative in equation (10.3.75) should
be second derivatives. The equation should read

uB(t,xR;xS) = − 1
4π2

d 2

dt 2

∫
V

Re
(
KKKB(x,LR,LS)∆

(
t − T̃ (x,LR,LS)

))
dV.

(10.3.75)
Equation (10.3.76) was correct.
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• Pages 530: Erratum — equation (10.3.88) contained a sign error. It
should read

ΓB(x,LR,LS)	
αB

α2
. (10.3.88)

Equation (10.3.89) was correct.

• Pages 551: Appendum — add an extra exercise:

Exercise 10.7 Show that expression (10.3.55) for the acoustic Born error
term can be reduced to

ΓE(x,LR,LS) =
1
4

(
ĝ(x,LR) + ĝ(x,LS)

)
· ∇ ln

(
Z(x)T (�)(x,LR)T (�)(x,LS)

)
.

Answer: The scalar Born error acoustic scattering term contains the
divergence of the normalized polarizations, ĝ, and the gradient of the ray
scalar amplitude, T (5.4.34). These are related.

Poynting’s vector (5.2.6) gives

∇ ·
(
P (0)v(0)

)
= 0,

and substituting for the ray dyadic (5.4.31) with (5.4.33) this reduces to

∇ ·
(
T 2ĝ

)
= 0,

assuming the source terms are isotropic. As a check, let us expand giving

∇ · ĝ = − ĝ · ∇(ln T 2)

= ĝ · ∇(lnR2)

= ĝ · ∇(ln J).

as the scalar ray amplitude is inversely proportional to the effective ray
length, R (5.4.34) with (5.2.72), and inversely proportional to the square
root of the ray tube cross-section, J (5.2.13) (the impedance factor Z

in equation (5.2.13) is part of the receiver normalization in g, (5.4.31)
with (5.4.33), not the transmission term, T (5.4.34)). These results are
consistent with those in Exercise 5.5

∇ · p̂ = K,

and
dJ

ds
= JK,
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where K is the wavefront curvature, i.e.

∇ · ĝ = K =
d
ds

(ln J) = ĝ · ∇(ln J).

They are easily checked for a spherical wavefront in a homogeneous medium
with R = r, ĝ = r̂, K = 2/r and ∇ · r̂ = 2/r.

The scalar Born error acoustic scattering term (10.3.55) is

ΓE =
1
4

(
∇ ln Z −∇

)
· (ĝR + ĝS) − 1

4

(
∇ ln

T R

T S

)
· (ĝR − ĝS).

For brevity, we omit the arguments and indicate the source/receiver rays
by a superscript, i.e. g(x,LS) = gS. Substituting for the divergence of the
polarization, this reduces to

ΓE =
1
4

(ĝR + ĝS) · ∇ ln(Z T RT S),

the required elegant, symmetric result.

• Pages 551: Appendum — add an extra exercise:

Exercise 10.8 Show that expression (10.3.78) can be reduced to

ΓB(x,LR,LS) =

gT(x,LR) ρB(x)g(x,LS) + ΘT(x,LR) : cB(x) : Θ(x,LS),

where

ΘT(x,L) =
1
2

(
p(x,L)gT(x,L) + g(x,L)pT(x,L)

)
,

is a symmetric dyadic formed from the ray slowness and energy-normalized
polarization, and the shorthand notation (:) indicates contraction of the
fourth-order stiffness perturbation tensor with the dyadic of the source
and receiver rays.

Answer: The first term involving the density perturbation is identical,
so we only consider the second term. For brevity, we omit the arguments
and indicate the source/receiver rays by a superscript, i.e. g(x,LS) = gS.
Using subscript notation, the scalar of interest is

− gRT
ZRT

k sB
kjZ

S
j g

S = − gR
a

(
ZR

k

)
ba

(
sB
kj

)
bc

(
ZS

j

)
cd

gS
d

= − gR
a (pR

mcambk)sB
bkcj(p

S
l ccjdl)gS

d

= − (gapm)R(plgd)S(cambk sB
bkcj ccjdl),

where, of course, we have assumed the Einstein summation convention
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over the repeated indices j and k, and a, b, c and d, and used definitions
(5.3.22) and (4.4.37).

We denote the second-order, symmetric tensor by Θ where

Θij =
1
2
(gipj + gjpi) or Θ =

1
2
(g pT + pgT)

(this symbol is used as overwriting g and p looks like θ, and its trace is
related to the dilatation (4.2.8)).

Differentiating expression (4.4.43), we have

cB
ijpqspqrs + cijpqs

B
pqrs = 0,

to first-order. Thus

cambksB
bkcjccjdl = − cB

ambksbkcjccjdl

= − cB
ambk

1
2

(δbdδkl + δblδkd)

= − cB
amdl,

using expression (4.4.43) and symmetries again. Thus the term of interest
is

− gRT
ZRT

k sB
kjZ

S
j g

S = ΘR
amcB

amdlΘ
S
dl

= ΘR : cB : ΘS,

using the shorthand notation. With this expression, we can easily obtain
the special forms in isotropic and TIV media.

The early publications on the Born approximation in elastic media
(Bhatia, 1959†; Miles, 1960‡) only discussed isotropic media. Hudson
and Heritage (1981) gave the general anisotropic result, and substituting
the ray Green function in their equation (3) would reduce to the above
result. Ben-Menahem and Gibson (1990) considered TIV media and Gib-
son and Ben-Menahem (1991) generalized this. More recently, Burridge,
de Hoop, Miller and Spencer (1998) have given an expression very similar
to ours, i.e. their equation (3.28) with the dyadics (3.25) and (3.26).

• Page 597: Erratum — on page 597 in the Bibliography, the page num-
bers for Thomson and Chapman (1984) should be 385–410 .

† Bhatia, A.B., 1959. Scattering of high-frequency sound waves in polycrystalline materials, J.
Acoust. Soc. Amer., 31, 16–23.

‡ Miles, J.W., 1960. Scattering of elastic waves by small inhomogeneities, Geophysics, 25, 642–8.
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• Pages 602 and 604: Erratum — “Bessel function” and “Hankel func-
tion” should have references to Appendix B.4, i.e. 562–563.

• Page 608: Erratum — the item “tranversely isotropic medium, 232”
should obviously have been included in the previous line for “transversely
isotropic medium”.


