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Answers to Exercises 
Chapter 3 

Exercise 3.1 
 
(a) In this case there is a balance between the buoyancy pressure Pb (Eq. 3.4b) and the fracture 

toughness pressure, Pf (Eq. 3.4d). Equating these expressions, we have 
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which rearranges to give the buoyancy length scale, 
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 (b) The first stage of the propagation is at constant aspect ratio, L ~ B, so there is a balance the 

buoyancy pressure, Eq. (3.4b), and viscous pressure, Eq. (3.4c), i.e., 
 

 

€ 

ΔρgL =
4ηLC
H 2 =

4ηL2

H 2t
 

 
The assumption of constant volume means that we can use V ~ HBL, i.e., H ~ V/L2. The 
means  
 

€ 

L5 =
ΔρgV 2

4η
t   , i.e.,  L∝ t1/5. 

 
During the second stage of emplacement, we use the same pressure balance, but with V ~ 
HBfL, where Bf is a constant.  This leads to 
 

€ 

ΔρgL =
4ηL2L2Bf

2

V 2t
  , 

 
which in turn leads to L ∝ t1/3. 

 
 
Exercise 3.2 
 
(a) In the first stage of propagation, the fissure is expanding (“the stress 

intensity factor exceeds the fracture toughness”), which implies a viscous 
pressure drop, Pv, while at the same time the elastic pressure, Pe, acts to 
close the fracture. This implies a balance between Pv and Pe (Eqs. 3.4a 
and 3.4c, where L is the diameter of the penny-shaped crack). The typical 
velocity for the fluid flow is found from C ~ L/t. 
 
Equating Eqs. (3.4a) and (3.4c), substituting for C, and rearranging 
yields: 
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However, the volume of the crack is V = π L2H/4, i.e., H = 4V/π L2.  Substituting this into the 
equation above yields 
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i.e., L grows as t1/9 (see Table 3.1). 

 
(b) In the second phase, when the fissure reaches the static state, the elastic pressure (Eq. 3.4a) is 

in equilibrium with the fracturing pressure (Eq. 3.4d), which leads to: 
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H
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Again, substituting H = 4V/π L2 yields 
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2EV
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Substituting the values given for E, V, Kc, and ν, we obtain L ~ 3.7 km and H ~ 9 cm. 
 
 

Exercise 3.3 
 
(a) To obtain the typical thickness we use the balance between buoyancy (Eq. 3.4b) and viscous 

pressure drop (Eq. 3.4c) as shown Figure 3.5.  This leads to 
 

€ 

H 2 =
4ηC
Δρg

  . 

 
Next, to estimate the vertical fluid flow velocity C from the volumetric flux, we first derive 
the flux per unit length by dividing the volumetric flux by the horizontal extent (breadth) of 
the dike: Q2D = Q3D/B. This flux can also be expressed as the product of the upward velocity 
and fissure thickness, Q2D = C H.  Therefore, using C ~ Q3D/(HB) in the equation above leads 
to  
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The expression for width of the dike tail given in Eq. (3.3a) is 
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This means that H is a factor (4/(3/2))1/3 greater than h, when considering three-dimensional, 
rather than two-dimensional behavior.  

 
(b) For the typical length, we use the balance between elastic pressure (Eq. 3.4a) and buoyancy 

(3.4b).  This leads to the expression 
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(c) Evaluating H and L using the expression in (a) and (b), and the values given in part (c) leads 

to H ~ 41/3 ~ 1.6 m and L ~ 3.3 km. 
 
In deriving these expressions the student should ensure that the equations are dimensionally 
correct, and be critical about the numerical values obtained.  For example, if the student 
inadvertently uses a value Young's modulus of 10 Pa (rather than 10 GPa), the length scale L 
would be only 9 cm.  This is clearly unreasonable, and so reassessment of the approach to 
problem is necessary. 

 


