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Exercises on Ch.2 Manipulation of thermodynamic 
quantities 
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2.5 Notation for partial derivatives

2.6 Use of various derivatives

2.7 Comparison between CV and CP

2.8 Change of independent variables

2.9 Maxwell relations

 

2.2 Internal variables at equilibrium 

Exercise 2.2.1 

At high temperatures, H2 gas may partially dissociate into H atoms. The following 
expression can be used for the Gibbs energy of a system which initially contained one 
mole of H2 molecules: G = (1 + ξ)RTln[P/(1 + ξ)] + (1 – ξ)[°GH2 + RTln(1 – ξ)] + 2ξ[°GH 
+ RTln(2ξ)]. Here, ξ is the fraction of H2 molecules which have dissociated into free H 
atoms, and °GH2 and °GH are the Gibbs energies of one mole of pure H2 and H, 
respectively, at a pressure equal to the unit used for pressure. Show how V can be 
calculated under freezing-in conditions at constant T and P. Then derive an expression for 
the equilibrium value of ξ and show how V can be calculated under equilibrium 
conditions. 

Hint 

It is convenient to introduce the equilibrium constant for the reaction H2 ⇔ 2H, K = 
exp[(2°GH – °GH2)/RT]. 

Solution 
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Freezing-in conditions: V = (∂G/∂P)T,ξ = (1 + ξ)RT/P for any constant value of ξ. 
Equilibrium conditions: – D = (∂G/∂ξ)T,P = RTlnP – RT(1 + ξ)/(1 + ξ) – RTln(1 + ξ) – 
°GH2 – RTln(1 – ξ) + RT(1 – ξ)/(1 – ξ)(– 1) + 2°GH + 2RTln(2ξ) + 2RTξ/ξ = 0 gives (1 – 
ξ2)4Pξ2 = K and PK41/1 +=ξ  at equilibrium. This ξ value could be inserted in the 
expression for G and V = (∂G/∂P)TT could then be evaluated. However, since (∂G/∂ξ)T,P = 
0 we can directly use the expression derived for the frozen-in case, with the equilibrium 
value of ξ inserted. We thus obtain )41/11)(/( PKPRTV ++= . 

Exercise 2.2.2 

According to a simple model, the internal energy of a solid metal at absolute zero can be 
described with an expression of the form U/N = k1(V/N)-2/3 – k2(V/N)-1/3 where N is the 
number of moles in the volume V. The equilibrium volume is then calculated from the 
minimum of U obtained from d(U/N)/d(V/N) = (2/3)k1(V/N)-5/3 + (1/3)k2(V/N)-4/3 = 0 giving 
V/N = (2k1/k2)3. This procedure may look incorrect because S and V are supposed to be 
constant when equilibrium is calculated by minimizing U. Discuss whether it may be 
correct, nevertheless. 

Hint 

Equilibrium should be calculated with respect to an internal variable, ξ, using (∂U/∂ξ)S,V = 
0 and V (or V/N) is regarded as ξ in the above calculation. It must be different from the V 
quantity which is kept constant. Try to define the nature of the two volumes by 
considering one mole of the metal contained in a constant volume V. What will happen? 

Solution 

We have no problem with S, which we can put to zero at absolute zero. Identifying ξ with 
V in the expression for U and denoting the volume of the container by Vc, we can rewrite 
(∂U/∂ξ)s,v as (∂U/∂V)s,v c. Suppose there is no atmosphere in the container and neglect the 
vapour pressure of the metal itself. The metal is then free to adjust its volume V (i.e. ξ) 
without affecting the volume of the whole system, Vc (i.e. an external state variable) and 
without affecting the number of atoms in the system. N should be interpreted as the 
number of atoms in the volume Vc, and N is thus constant. The calculation is then correct. 

2.4 Experimental conditions 

Exercise 2.4.1 

Find the conditions for which T(∂S/∂T)v is equivalent to Cv = (∂U/∂T)v. 

Hint 

Start from the basic form of the combined law. 
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Solution 

dU = TdS – PdV – Ddξ. Under constant V we get dU = TdS and (∂U/∂T)v = T(∂S/∂T)v if 
Ddξ = 0. This occurs under two different conditions. One is D = 0, so-called reversible 
conditions. The change of T is slow enough to make ξ adjust to equilibrium all the time. 
The other is dξ = 0, so-called freezing-in conditions. The change is so rapid that there is 
no internal reaction. For clarity we could write this case as (∂U/∂T)v.ξ = T(∂S/∂T)v.ξ. Of 
course, it is always true if there is no possible internal process in the system. 

Exercise 2.4.2 

It is well known that S can increase spontaneously towards a maximum if U and V are 
kept constant. Find another condition under which S can increase spontaneously towards 
a maximum. Then, discuss how the two kinds of conditions can be realized 
experimentally. 

Hint 

We can use any form of the combined law which contains dS, then use the first law in 
order to examine the experimental conditions. 

Solution 

dH = TdS + VdP – Ddξ can be written as TdS = dH – VdP + Ddξ and S may thus 
increase spontaneously towards a maximum if H and P are constant as well as if U and V 
are kept constant. The first law gives dU = dQ – PdV and the condition of constant U and 
V may thus be realized experimentally by keeping dQ and dV equal to zero, i.e. by using 
adiabatic and isochoric conditions. By introducing H into the first law we get dH = d(U + 
PV) = dQ – PdV + PdV + VdP = dQ + VdP. The condition of constant H and P can thus 
be realized experimentally by keeping dQ and dP equal to zero, i.e. by using adiabatic 
and isobaric conditions. 

In fact, S will increase spontaneously towards a maximum under all adiabatic conditions. 
The second law gives directly dS = dQ + Ddξ = Ddξ > 0 for all spontaneous processes. 

Exercise 2.4.3 

One mole of a fluid at TT1,P1 is compressed adiabatically to P2. Discuss how one can 
calculate the work done on the system if one knows the properties of the system. 

Hint 

The problem may look like a simple first-law problem. However, it is not well defined. 
We must make some assumption regarding the process of compression in addition to its 
being adiabatic. Make the assumption that would give the simplest calculation. 
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Solution 

Suppose the experiment is made under reversible conditions in addition to adiabatic 
conditions. Then the second law gives TdS = dQ + Ddξ = 0 and S is constant. If we had 
an equation of state S = S(T,P), then we could calculate the new T from the new P and 
the old T and P. If we also had an equation of state U = U(T,P), then we could calculate 
ΔU between the two states and that would be equal to the work done on the system 
because the first law gives dU = dQ + dW = dW. 

2.5 Notation for partial derivatives 

Exercise 2.5.1 

How should HPP be interpreted? 

Solution 

S and P are the natural variables of H and HPP thus means (∂2H/∂P2)s,ξ or (∂2H/∂P2)s. In the 
latter case ξ is a dependent variable which is continuously adjusted to equilibrium. In 
order to interpret HPP one would need to know the conditions. 

2.6 Use of various derivatives 

Exercise 2.6.1 

Prove the following relation which is known to be a very useful equation (∂U/∂V)TT = 
T(∂P/∂T)V – P. 

Hint 

Since V and T are used as variables, express U in terms of F which has V and T as its 
natural variables. Remember that (∂P/∂T)V = – FVT = (∂S/∂V)TT. 

Solution 

U = F + ST; (∂U/∂V)TT = (∂F/∂V)TT + T(∂S/∂V)TT = – P + T(∂P/∂T)V. 

Exercise 2.6.2 

Express the effect of adiabatic compression on the temperature in terms of directly 
measurable material properties. Suppose there is no entropy producing internal process.  

Hint 

Remember from Section 2.4 that a reversible and adiabatic process is also isentropic. One 
should thus start by expressing dS as a function of dP and dT. 
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Solution 

Since  one obtains TP GTGS −=∂∂−= )/( dTTCdPVdTGdPGdS PTTTP )/(+−=−−= α . 
Thus,  yields 0=dS Padiab CTVdPdT /)/( . α= . This result describes the so-called 
thermoelastic effect. α  is usually positive and a pressure increase will then cause the 
temperature to rise. However, there are some materials where α  is negative and the 
temperature will sink. For a material with negative α  the temperature will thus sink 
although the work of compression is positive. It is evident that the effect on temperature 
is not related to the work of compression.  

Exercise 2.6.3 

From the result of the previous exercise, Padiab CTVdPdT /)/( . α= , it would seem that the 
thermoelastic effect is independent of the compressibility. The equation seems to predict 
that the temperature should change with P even if the compressibility is zero, which may 
seem surprising because one can see no effect of the increased P on the structure of the 
material. The distances between atoms have not changed. This seems like a paradox. Try 
to find an explanation.  

Hint 

Check carefully if the thermoelastic effect is really independent of the compressibility. 

Solution 

VC  is a more fundamental material property than  because it only concerns what 
happens inside the material when heated. It may seem reasonable that  is fairly 
independent of the compressibility, 

PC

VC

Tκ . Eq. 2.34 yields  and  
would thus go to infinity when 

TVP TVCC κα /+= 2
PC

Tκ  goes to zero whereas  does not. The thermoelastic 
effect will also go to zero and there is no paradox. It should be better to write the 
thermoelastic effect as 

VC

)///(1)/( . TVadiab TVCdPdT καα += . 

Exercise 2.6.4 

It is well known that the heat capacity at constant volume is defined as dQ/dT at constant 
V. Another important quantity is defined as dQ/dV at constant T. It is sometimes called 
the latent heat of volume change. Derive a general expression for this new quantity in 
terms of state variables. 

Hint 

Since the variables are V and T, it is convenient to use F and its derivatives. Start with the 
first law, then use U = F + ST = F – TFTT. 
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Solution 

dQ = dU + PdV; (∂Q/∂V)TT = (∂U/∂V)TT + P = FV – TFTV + P = – TFTV. Using the hint in 
the preceding problem, the result can also be expressed as T(∂S/∂V)TT or T(∂P/∂T)V. 

Exercise 2.6.6 

It is well known that G has a minimum at equilibrium under constant T and P but F has a 
minimum at equilibrium under constant T and V. That being so, what is wrong in the 
following derivation? 

Consider V as a function of P and T, 

dV = (∂V/∂P)TTdP + (∂V/∂T)pdT = – VκTTdP + VαdT 
dF = – PdV – SdT – Ddξ = PVκTTdP – (S + PVα)dT – Ddξ 
(∂F/∂ξ)T,P = – D 

If this derivation were correct, it would seem that there could be a spontaneous process 
under constant P and T until F has reached a minimum, not G. 

Hint 

We are considering a system with a possible internal process. We must then include ξ 
among the state variables and realize that the volume depends upon the ξ value. 

Solution 

We want to replace dV in dF = – PdV – SdT – Ddξ and instead introduce dP. It is evident 
that we must then consider V as a function of the new set of variables P,T,ξ: dV = 
(∂V/∂P)T,ξdP + (∂V/∂T)P,ξdT + (∂V/∂ξ)T,Pdξ = – VκTTdP + VαdT + (∂V/∂ξ)T,Pdξ and here KTT 
and α must be determined at constant ξ. We now get dF = PVκTTdP – (S + PVα)dT – [D + 
P(∂V/∂ξ)T,P]dξ. At constant T,P: D + P(∂V/∂ξ)T,P = – (∂F/∂ξ)T,P and –D = [∂(F + PV)/∂ξ]T,P 
= (∂G/∂ξ)T,P. 

2.7 Comparison between CV and CP

Exercise 2.7.1 

Calculate the heat flow into a system in two cases: 

(a) Heating from TT1 to TT2 under constant V. 

(b) Heating from TT1 to TT2 under constant P and then compression back to the initial 
volume under constant TT2. 

Suppose the system is an ideal classical gas for which PV = RT and U = A + BT. 
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Hint 

Use the first law in all cases. 

Solution 

 (a) dQ = dU + PdV = dU; Q = ΔU = B(TT2 – TT1). 
(b1) dQ = dU + PdV; Q1 = ΔU + P1ΔV = B(TT2 – TT1) + P1(V2 – V1). 
(b2) dQ = dU + PdV; Q2 = ΔU + ∫PdV = 0 + ∫(RT2/V)dV = RT2ln(V1/V2) 

where V1 = RT1/P1; V2 = RT2/P1. Therefore, ΣQ = B(TT2 – TT1) + R(TT2 – TT1) + RT2ln(TT1/TT2). 
For small TT2 – TT1: TT2ln(TT1/TT2) = TT2ln[1 + (TT1 – TT2)/TT2] ≅ TT1 – TT2, and ΣQ ≅ (B + R – R)(TT2 – 
TT1) = B(TT2 – TT1). (Same as for (a).) 

2.8 Change of independent variables 

Exercise 2.8.1 

From γ = αV/CVκTT, show that γ = αV/CPκS, i.e. show that CVκTT = CPκS. 

Hint 

κS = – (∂V/∂P)S/V. Change all the derivatives to G of T and P. Use the expressions of  
and  in terms of such derivatives.  and 

PC

VC VC Tκ  were given in Section 2.6. 

Solution 

TSPS
TPPP

TSPS
TVPV

PVV SS ∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂=−
//
//

/
//
//

)/(κ  

TTTPPTPPPTPT GGGGTSPSTVPV /)//()/()/()/( −=∂∂∂∂∂∂−∂∂=  

But  and . Thus . From expressions 
for  and 

TTP TGC −= PGV = PTPPPTTSP GGGGTC /)( 2−=κ

VC Tκ  in Section 2.6 we get  
which yields 

)/)(/1)(( 2
PPPPPPPTTTPTV GGGGGGTC −−=κ

SPC κ . 

2.9 Maxwell relations 

Exercise 2.9.1 

Show that dS = (CV/T)dT + (α/κTT)dV. 

Hint 
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We want to show that CV/T = (∂S/∂T)V and α/κTT = (∂S/∂V)TT. The first relation is obtained 
from the second law under reversible conditions. The second relation is obtained from the 
definitions of α and κTT in derivatives of G after some manipulation involving the last 
equation derived in Section 2.8 and a Maxwell relation. 

Solution 

Under reversible conditions we get dQ = TdS; Cv = (dQ/dT)V = T(∂S/∂T)V. From the 
definitions of α and κTT we get α/κTT = (∂V/∂T)P/[ – (∂V/∂P)TT] = (∂P/∂T)V = (∂S/∂V)TT and 
thus dS = (CV/T)dT + (α/κTT)dV. 

Exercise 2.9.2 

Evaluate the thermal expansivity at absolute zero for a substance obeying the third law. 

Hint 

According to the third law, S approaches the same value at absolute zero for all ordered 
states of a substance. The limiting S value is not only independent of the crystalline 
structure but also of the pressure, (∂S/∂P)T=0 = 0. 

Solution 

α = (∂V/∂T)P/V. Since V and P are conjugate variables, we can use a Maxwell relation, α 
= (∂2G/∂P∂T)/V = – (∂S/∂P)TT/V = 0 at T = 0. 

Exercise 2.9.3 

Transform (∂H/∂P)TT using a Maxwell relation. 

Hint 

In order to introduce H as a conjugate variable to T (or rather 1/T) in the combined law, 
one should use the entropy scheme, presented in Section 1.12. 

Solution 

From the entropy scheme we get d(G/T) = Hd(1/T) + (V/T)dP. Thus, (∂H/∂P)TT = 
(∂H/∂P)1/T = (∂[V/T]/∂[1/T])P = V – T(∂V/∂T)P. 
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