Page #	Where	Corrections
18	Fig. 1.8 caption	radiation energy \rightarrow photon energy
26	Section 1.2.5	This discussion largely follows that presented in Ref. [6] of Chapter 4.
33	fourth line	a high-brightness flux \rightarrow high-brightness beams
41	second paragraph, second line	$(2.26) \to (2.23)$
45	second line of footnote	and conserved \rightarrow are conserved
52	Eq. (2.77) right side	$\frac{\Delta\omega}{\omega} ightarrow \frac{1}{\omega}$
52	paragraph between Eqs. (2.77) and (2.78) should be replaced with	We plot the function $hK^2[JJ]_h^2/(1 + K^2/2)$ in Fig. 2.8(b). If we consider the fundamental harmonic $h = 1$, and take $K \sim 1$, then Eq. (2.77) becomes roughly $d\mathcal{F}_1 \sim \alpha N_u(I/e)d\omega/\omega$. This can be understood in the following way. Since the deflection angle per period is $\sim 1/\gamma$, each electron emits roughly α photons every period in view of Eq. (2.29), and of order αN_u photons over the length of the undulator. Thus, an electron beam of current I radiates $\mathcal{F}_1 \sim \alpha N_u(I/e)$ photons per unit time. This estimate is for all photons in the full spectral range $\Delta \omega/\omega \sim 1$. The number of emitted photons $d\mathcal{F}_1$ in a narrow spectral range $d\omega/\omega \ll 1$ will then be given by $d\mathcal{F}_1 \sim \alpha N_u(I/e)d\omega/\omega$, as stated in the above. Note that the number of photons produced in the characteristic spectral width $\Delta \omega/\omega \sim 1/N_u$ in the central cone is independent of N_u . In practical units, the undulator photon flux in the central cone, Eq. (2.77), can be written as
52	Eq. (2.78) left side	$\frac{d\mathcal{F}_h}{d\omega} ightarrow \frac{d\mathcal{F}_h}{d\omega/\omega}$
52	Eq. (2.78) right side	$\frac{h[JJ]_{h}^{2}}{1+K^{2}/2} \to \frac{hK^{2}[JJ]_{h}^{2}}{1+K^{2}/2}$
81	below Eq. (3.18)	$(2.61) \to (2.67)$
85	below Eq. (3.36)	electron deviation \rightarrow electron energy deviation
97	second line below Eq. (3.93)	growth length \rightarrow gain length
100	third line below (3.111)	length length \rightarrow length
101	item 7	$P_{\rm in} \sim \rho \gamma m c^2 / N_{l_{\rm coh}} \rightarrow P_{\rm in} \sim \rho P_{\rm beam} / N_{l_{\rm coh}}$
105	below Eq. (4.4)	$\omega_1 \int d\omega E_\nu \to \omega_1 \int d\nu E_\nu$
119	below Eq. (4.70)	no indentation
124	fourth line	$(4.47) \to (4.31)$
147	fourth line below Eq. (5.27)	than \rightarrow then (and in numerous places)

Table 1: Errata: Synchrotron Radiation and Free-Electron Lasers

147	Eq. (5.28)	$\sigma_y ightarrow \sigma_x$
150	third line	$\bar{k}_{eta} ightarrow k_{eta}$
150	second to last line	$\beta_x \to \bar{\beta}_x$
156	third line	[7], Here \rightarrow [7]. Here
159	end of first paragraph	missing)
160	below Eq. (5.84)	low-amplitude gain \rightarrow small-signal gain
161	second line below Eq. (5.90)	detuning $x \to \det x_0$
161	third line below Eq. (5.92)	$(5.85) \to (5.92)$
161	fifth line below Eq. (5.92)	$(5.85) \to (5.92)$
161	second to last line	$(5.4.1) \to (5.92)$
162	Figure 5.9 (a)	horizontal axis $x \to x_0$
162	Figure 5.9 caption	$x \to x_0$
166	first line	$A^{\dagger}_{\ell} ightarrow \mathcal{A}^{\dagger}_{\ell}$
169	below Eq. (5.130)	$(5.123) \to (5.109)$
169	second line below (5.132)	$U = 0$ otherwise $\rightarrow U = 0$ if $ \boldsymbol{x} \ge \sqrt{2}\sigma_x$
169	third line below (5.133)	$y \rightarrow y $
171	second line above (5.140)	it it ightarrow it
202	Second line of Eq. (7.13)	$ \exp\left[-\frac{\sqrt{G}c\sigma_{\text{filter}}}{2\sigma_z}\tau^2\right] H_p\left(G^{1/4}\sqrt{\frac{c\sigma_{\text{filter}}}{\sigma_z}\tau}\right) \rightarrow \exp\left[-\frac{\sqrt{G}\sigma_{\text{filter}}}{2c\sigma_z}\tau^2\right] H_p\left(G^{1/4}\sqrt{\frac{\sigma_{\text{filter}}}{c\sigma_z}\tau}\right) $
202	second line of last paragraph	$\sigma_{\rm refl} \ll 1/N_u \lambda_1 \to \sigma_{\rm refl} \ll c/N_u \lambda_1$
203	below (7.16)	$\text{recell} \rightarrow \text{recall}$
204	sentence just before Eq. (7.19)	The matrix $M_{2res} \rightarrow$ The matrix M_{2res}
204	Eq. (7.19)	$\mathbf{M}_{1\mathrm{res}} o \mathbf{M}_{2\mathrm{res}}$
206	Figure 7.3(a)	F_1 and F_2 lens should switch positions
206	third to last line	$Z_R^2/l_1 \to Z_R^2/l_1^2$
213	last line of first paragraph	high intensity X-ray pulses of sub-femtosecond duration can be generated.
		\rightarrow high intensity, ultra-short x-ray pulses can be generated using techniques like those developed for SASE that we describe in Sec. 8.2.3.
216	below Eq. (8.3)	$2L_G \rightarrow L_G$
222	sixth line of second paragraph	fractional \rightarrow relative

222	Figure 8.3 caption, second to last line	dashed curve \rightarrow gray curve
233	second to last line	delete length
236	second line below Eq. (8.14)	$u^2 ightarrow u $
241	Eq. (A.7)	$\mathcal{H} ightarrow \mathscr{H}$
241	Eq. (A.8)	$\mathcal{H} ightarrow \mathscr{H}$
241	second line above Eq. $(A.9)$	$H ightarrow \mathcal{H}$
244	second to last line	being \rightarrow begin
245	above Eq. (A.27)	$\partial F_2 / \partial p \to \partial F_2 / \partial \theta$
252	third line above (B.11)	beam \rightarrow beamlet
257	fourth line below (C.12)	non-commutivity \rightarrow non-commutativity
262	Eq. (C.53)	incomplete equation, set it equal to zero
263	below Eq. (C.56)	The Gaussian distribution (C.55) has an RMS width in $\tilde{\theta}$ equal to \sqrt{q} and an RMS width in p
		\rightarrow By integrating (C.55) over p , we find that the distribution in $\tilde{\theta}$ is Gaussian with RMS width \sqrt{q} ; likewise, marginalizing over $\tilde{\theta}$ results in a Gaussian in p with RMS width
263	second line below Eq. (C.56)	$(C.50) \rightarrow (C.52)$
264	right side of Eq. (C.59)	$\frac{G}{2} \left[\frac{1}{q} \left(\sigma_{\theta}^2 + \frac{q^2}{4\sigma_{\theta}^2} + \frac{1}{2} \right) \right] \rightarrow \frac{G}{2} \left[\frac{1}{q} \left(\sigma_{\theta}^2 + \frac{q^2}{4\sigma_{\theta}^2} \right) + \frac{1}{2} \right]$
264	second line after (C.59)	$\frac{1}{2} \langle \mathscr{F}_Q^{\dagger} \mathscr{F}_Q \rangle_{\Psi} = 3G/2 \rightarrow \frac{1}{2} \langle \mathscr{F}_Q^{\dagger} \mathscr{F}_Q \rangle_{\Psi} = 3G/4$
266	Eq. (C.69)	$\hbar\omega/c = \hbar(k,k) \to k = \hbar(\omega/c,\omega/c)$
266	second line below Eq. (C.69)	its \rightarrow it is a
266	Eqs. (C.75) and (C.76)	$\mathcal{J} ightarrow \mathfrak{J}$
270	first line	assume that $d\gamma/dt \ll \gamma$
		\rightarrow assume that the second-order time derivative is negligible
271	Eq. (D. 18)	$x_\eta \to x_\beta$