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3

Gravitation and Harmonic Functions

Exercises

3.1 In this exercise, the harmonicity of the fundamental solutions

γn(x) :=
1

(n− 2)|x|n−2
, x ∈ Rn \ {0}, if n ≥ 3 ,

and

γ2(x) := − log |x| , x ∈ R2 \ {0}, if n = 2 ,

is to be proved. For n ≥ 3, we obtain

γn(x) =
1

n− 2

 n∑
j=1

x2
j

(−n+2)/2

,

∂γn
∂xk

(x) =
1

n− 2

−n+ 2

2

 n∑
j=1

x2
j

−n/2 2xk = −

 n∑
j=1

x2
j

−n/2 xk ,
∂2γn
∂x2

k

(x) = −
(
−n

2

) n∑
j=1

x2
j

(−n−2)/2

2x2
k −

 n∑
j=1

x2
j

−n/2 .
Hence, the Laplace operator yields

∆xγn(x) =
n∑
k=1

∂2γn
∂x2

k

(x) = n|x|−n−2
n∑
k=1

x2
k︸ ︷︷ ︸

=|x|2

−n|x|−n = 0 .

In the case n = 2, we obtain

γ2(x) = − log

 2∑
j=1

x2
j

1/2

,

∂γ2

∂xk
(x) = −

 2∑
j=1

x2
j

−1/2

1

2

 2∑
j=1

x2
j

−1/2

2xk = −

 2∑
j=1

x2
j

−1

xk ,
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∂2γ2

∂x2
k

(x) =

 2∑
j=1

x2
j

−2

2x2
k −

 2∑
j=1

x2
j

−1

such that

∆xγ2(x) = 2|x|−4
2∑

k=1

x2
k︸ ︷︷ ︸

=|x|2

−2|x|−2 = 0 .

3.2 The exercise is to show the harmonicity of

V (x) :=

∫
D
F (y)

1

|x− y|n−2
dy , x ∈ Rn , if n ≥ 3 ,

V (x) :=

∫
D
F (y) log |x− y|dy , x ∈ R2, if n = 2 ,

outside D, where D ⊂ Rn is a bounded and open set and F : D → R is a bounded

and Lebesgue-integrable function.

Let x ∈ R3 \D be arbitrary but fixed. Then there exists ε > 0 such that Bε(x) ⊂
R3 \D. In analogy to the solution of Exercise 3.1, we obtain, for n ≥ 3,

∂

∂xk

1

|x− y|n−2
= −(n− 2)

 n∑
j=1

(xj − yj)2

−n/2 (xk − yk) ,

∂2

∂xl∂xk

1

|x− y|n−2
= (n− 2)n

 n∑
j=1

(xj − yj)2

−(n+2)/2

(xl − yl) (xk − yk)

− (n− 2)

 n∑
j=1

(xj − yj)2

−n/2 δlk
such that ∣∣∣∣∇x 1

|x− y|n−2

∣∣∣∣ ≤ (n− 2)
1

|x− y|n−1
,

∣∣∣∣ ∂2

∂xl∂xk

1

|x− y|n−2

∣∣∣∣ ≤ (n− 2)(n+ 1)
1

|x− y|n ,

while the case n = 2 leads us to

∂

∂xk
log |x− y| =

 2∑
j=1

(xj − yj)2

−1

(xk − yk) ,

∂2

∂xl∂xk
log |x− y| = −

 2∑
j=1

(xj − yj)2

−4/2

2 (xl − yl) (xk − yk)

+

 2∑
j=1

(xj − yj)2

−2/2

δkl



Exercises 3

with

|∇x log |x− y|| ≤ 1

|x− y| ,∣∣∣∣ ∂2

∂xl∂xk
log |x− y|

∣∣∣∣ ≤ 3

|x− y|2 .

Hence, there exist constants An and Bn such that, for n ≥ 2, a first-order deriva-

tive of the integrand of V with respect to x is bounded by Anε
1−nM and any

corresponding second-order derivative is bounded by Bnε
−n for all y ∈ D, where

M := supy∈D |F (y)|. Since D is bounded, the constant bounds are integrable in D

and, consequently, we can interchange first- and second-order differentiations with

the integral. In view of Exercise 3.1, we get that ∆xV (x) = 0.

3.3 A possible definition is:

U is regular at infinity (in Rn), if |U(y)| = O(|y|2−n) and |∇U(y)| = O(|y|1−n) as

|y| → ∞.

Obviously, y 7→ |y|2−n satisfies the first requirement. From the solution of Exercise

3.1, we see that ∇|y|2−n = (2− n)|y|−ny and |∇|y|2−n| = (n− 2)|y|1−n = O(|y|1−n)

as |y| → ∞.

3.4 The Kelvin transform is defined by F ∗(x) := |x|2−nF (|x|−2x), x ∈ R∗ ⊂ Rn. The

proof of the formula for the application of the Laplace operator is basically analogous

to the proof in the case n = 3, which is in the book. We obtain

∆xF
∗(x) =

(
∆x|x|2−n

)
F

(
x

|x|2
)

+ 2
(
∇x|x|2−n

)
· ∇xF

(
x

|x|2
)

+ |x|2−n∆xF

(
x

|x|2
)
.

According to Exercise 3.1, the first summand on the right-hand side vanishes and

∇x|x|2−n = (2 − n)|x|−nx. The calculation of ∇xF (|x|−2x) is independent of the

dimension n (see the proof for n = 3). Hence, we obtain

2
(
∇x|x|2−n

)
· ∇xF

(
x

|x|2
)

= 4(n− 2)
|x|2
|x|n+4

x · (∇yF (y))|y= x
|x|2
− 2

n− 2

|x|n+2
x · (∇yF (y))|y= x

|x|2

=
2(n− 2)

|x|n+2
x · (∇yF (y))|y= x

|x|2

for all x ∈ R∗. The formula for ∂2

∂x2j
F (|x|−2x) is also entirely independent of the

dimension n such that we can take the already derived formula for n = 3 here as

well. A closer look at the sum over j = 1, 2, 3 (also available in the book) reveals that,

for general n, only one term changes. We get (the 2n in the first line was originally

6 for n = 3)

∆xF

(
x

|x|2
)

=

(
8|x|2 − 2n|x|2

|x|6 − 4

|x|4
)
x · (∇yF (y))|y= x

|x|2

+

(
4

|x|6 −
2

|x|6 −
2

|x|6
)
xT [(∇y ⊗∇y)F (y)]|y= x

|x|2
· x
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+
1

|x|4 (∆yF (y))
∣∣∣y= x

|x|2
.

Eventually, the combination of the derivations above leads us to

∆xF
∗(x) =

2(n− 2)

|x|n+2
x · (∇yF (y))|y= x

|x|2
− 2n− 4

|x|n+2
x · (∇yF (y))|y= x

|x|2

+
1

|x|n+2
(∆yF (y))|y= x

|x|2

=
1

|x|n+2
(∆yF (y))|y= x

|x|2
, x ∈ R∗ .

3.5 A function U ∈ C(2)(D), D ⊂ R, is harmonic, if and only if U ′′(x) = 0 for all x ∈ D.

If D is a region, which means in R1 that D is an open interval, then a harmonic

function U on D must have the form U(x) = ax+ b for some constants a, b ∈ R.

Gauß’s mean value theorem in R1 can be postulated as follows: If U : [x0−R, x0 +

R]→ R is harmonic on ]x0 −R, x0 +R[ and continuous on [x0 −R, x0 +R], then

U(x0) =
1

2
(U (x0 −R) + U (x0 +R)) =

1

2R

∫ x0+R

x0−R
U(x) dx .

The analogy is given in the sense that [x0−R, x0 +R] is a one-dimensional ball with

the measure 2R and its boundary is given by {x0−R, x0 +R}, which has 2 elements.

The proof is easy. With the considerations above, we get∫ x0+R

x0−R
U(x) dx =

∫ x0+R

x0−R
ax+ bdx =

(a
2
x2 + bx

)∣∣∣x0+R

x0−R

=
a

2
(x0 +R)2 − a

2
(x0 −R)2 + b (x0 +R)− b (x0 −R)

=
a

2
4x0R+ 2bR = 2R(ax0 + b) = 2RU(x0)

and

1

2
(U (x0 −R) + U (x0 +R)) =

1

2
(a (x0 −R) + b+ a (x0 +R) + b) = U(x0) .

3.6 We use the fundamental theorem on the ball BR(x0), namely

4πU(x0) =

∫
SR(x0)

(
1

|x− x0|
∂U

∂ν
(x)− U(x)

∂

∂ν(x)

1

|x− x0|

)
dω(x)

−
∫
BR(x0)

∆U(x)

|x− x0|
dx , (3.1)

and Green’s second identity, that is∫
BR(x0)

U(x) ∆x1︸︷︷︸
=0

−1 ∆xU(x) dx =

∫
SR(x0)

U(x)
∂

∂ν(x)
1︸ ︷︷ ︸

=0

−1
∂

∂ν(x)
U(x) dω(x) .

(3.2)

From (3.2), we obtain∫
SR(x0)

1

|x− x0|
∂U

∂ν
(x) dω(x) =

1

R

∫
SR(x0)

∂U

∂ν
(x) dω(x) =

1

R

∫
BR(x0)

∆xU(x) dx .

(3.3)
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Furthermore, by using

ν(x) =
x− x0

R
, x ∈ SR(x0) ,

and

∇x
1

|x− x0|
= − x− x0

|x− x0|3
,

we get∫
SR(x0)

U(x)
∂

∂ν(x)

1

|x− x0|
dω(x) =

∫
SR(x0)

U(x)
x− x0

R
· −(x− x0)

|x− x0|3
dω(x)

= − 1

R2

∫
SR(x0)

U(x) dω(x) . (3.4)

Inserting (3.4) and (3.3) into (3.1), we obtain the desired result.

3.7 Due to the chain rule, we have

∇|∇V | = 1

2|∇V | ∇|∇V |
2 .

Hence,

∇|∇V (x)| = 1

2|∇V (x)|

(
∂

∂xi

3∑
k=1

(
∂

∂xk
V (x)

)2
)
i=1,2,3

=
1

|∇V (x)|

(
3∑

k=1

∂

∂xk
V (x)

∂2

∂xi∂xk
V (x)

)
i=1,2,3

=
1

|∇V (x)|(∇⊗∇V (x)) · (∇V (x))

= −(∇⊗∇V (x)) · n(x) , (3.5)

where the dot in the latter and the penultimate line stands for a matrix-vector mul-

tiplication.

With the formula ∇∗F = ∇F − (n · ∇F )n for the surface gradient, we can now

conclude that

∇∗|∇V | = −(∇⊗∇V )n+
(
nT(∇⊗∇V )n

)
n . (3.6)

Furthermore, we have, due to the product rule, the identity

ϕ′′(s) =
d

ds
n(ϕ(s)) =

d

ds

(
− ∇V (ϕ(s))

|∇V (ϕ(s))|

)
(3.7)

=
1

|∇V (ϕ(s))|2
(

d

ds
|∇V (ϕ(s))|

)
∇V (ϕ(s))− 1

|∇V (ϕ(s))|
d

ds
∇V (ϕ(s)) .

The chain rule also yields

d

ds
∇V (ϕ(s)) = (∇⊗∇V (ϕ(s))) · ϕ′(s)︸ ︷︷ ︸

=n

, (3.8)

where the dot again represents the matrix-vector multiplication. Moreover, with (3.5),

we arrive at (the dot now represents the Euclidean inner product)

d

ds
|∇V (ϕ(s))| = ∇|∇V (ϕ(s))| · ϕ′(s) = −nT(∇⊗∇V )n

∣∣
ϕ(s)

. (3.9)
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Eventually, we combine (3.6), (3.7), (3.8), and (3.9) and we observe that

ϕ′′(s) =

{
1

|∇V |
[(
nT(∇⊗∇V )n

)
n− (∇⊗∇V )n

]}∣∣∣∣
ϕ(s)

=

(
1

|∇V | ∇
∗|∇V |

)∣∣∣∣
ϕ(s)

.

3.8 For proving this, we need to assume that U ∈ C(2)(R). We start with the proof of

‘⇒’: for this purpose, we use the stronger version of Gauß’s mean value theorem from

Exercise 3.6. Moreover, we observe that |x− x0| < R for all x ∈ BR(x0) and, hence,

|x − x0|−1 − R−1 > 0. Let now ∆U ≥ 0 on R and let the ball BR(x0) be arbitrarily

chosen, with the mere requirement that BR(x0) ⊂ R. Then we obtain

U(x0) =
1

4πR2

∫
SR(x0)

U(x) dω(x)− 1

4π

∫
BR(x0)

∆U(x)

(
1

|x− x0|
− 1

R

)
dx

≤ 1

4πR2

∫
SR(x0)

U(x) dω(x) .

Hence, since a smaller radius of the ball would work as well, we have

U(x0) ≤ 1

4π%2

∫
S%(x0)

U(x) dω(x) for all % ∈ ]0, R] .

We easily deduce now that∫ R

0
U(x0)%2 d% ≤

∫ R

0

1

4π%2

∫
S%(x0)

U(x) dω(x) %2 d% .

Obviously, this leads us to

R3

3
U(x0) ≤ 1

4π

∫
BR(x0)

U(x) dx

such that U is subharmonic.

For ‘⇐’, we assume that U is subharmonic and BR(x0) ⊂ R is an arbitrary ball.

Then we consider the properties of a function V ∈ C(BR(x0)) which is harmonic

on BR(x0) and satisfies U ≤ V on SR(x0). Let W := U − V . We want to prove that

the latter inequality is maintained on BR(x0). For this purpose, we assume that there

is y ∈ BR(x0) with U(y) > V (y).

Since W is continuous and BR(x0) is compact, there exists z ∈ BR(x0) such that

A := W (z) = max
x∈BR(x0)

W (x). Due to the assumption above, A must be positive.

However, since W is non-positive on SR(x0), it cannot be constant. Therefore, there

exists x1 ∈ BR(x0) where W (x1) = A and each neighbourhood of x1 contains points

x with W (x) < A. Thus, the subharmonicity of U and Gauß’s mean value theorem

for V yield (provided that R is sufficiently small)

A = W (x1) = U(x1)− V (x1)

≤ 3

4πR3

∫
BR(x1)

U(x) dx− 3

4πR3

∫
BR(x1)

V (x) dx =
3

4πR3

∫
BR(x1)

W (x) dx

< A , (3.10)
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where the latter inequality holds true due to our previous observation on W in neigh-

bourhoods of x1 and the continuity of W . However, (3.10) includes the contradiction

A < A. Hence, our assumption is falsified and U ≤ V on the whole set BR(x0).

In particular, if V is the (unique) solution of the IDP

∆V = 0 on BR(x0) and V = U on SR(x0),

then the latter result implies that U(x) ≤ V (x) for all x ∈ BR(x0), while Gauß’s

mean value theorem leads us to

U(x0) ≤ V (x0) =
1

4πR2

∫
SR(x0)

V (x) dω(x) =
1

4πR2

∫
SR(x0)

U(x) dω(x) .

Consequently, the stronger version of Gauss’s mean value theorem (Exercise 3.6)

yields

1

4π

∫
B%(x0)

∆U(x)

(
1

|x− x0|
− 1

%

)
︸ ︷︷ ︸

>0

dx ≥ 0

for all % ∈ ]0, R]. If we had ∆U(x0) < 0, then there would exist % > 0 with ∆U |B%(x0) <

0, which is a contradiction. Due to the arbitrariness of x0, the proof is finished.

The solution of part b is: U is subharmonic ⇔ U is convex.

3.9 We observe first that T F ∈ C(E) for all F ∈ C(D) and T is linear due to basic

propositions from real analysis. Furthermore, the triangle inequality for integrals and

the continuity of the integral kernel K and of F yield

|(T F )(x)| ≤
∫
D
|K(x, y)|︸ ︷︷ ︸
≤‖K‖C(E×D)

|F (y)|︸ ︷︷ ︸
≤‖F‖C(D)

dy ≤ ‖K‖C(E×D)λ(D)‖F‖C(D) (3.11)

for all x ∈ E and all F ∈ C(D), where λ is the usual Lebesgue measure. Hence, T is

bounded, because

‖T F‖C(E) ≤ ‖K‖C(E×D)λ(D)‖F‖C(D) for all F ∈ C(D) .

Let us now prove that T is compact. For this purpose, we consider the image of the

unit sphere U in C(D) and show that T U is relatively compact by using the Ascoli–

Arzelà theorem. This means that we need to prove that T U is pointwise bounded

and equicontinuous.

From Equation (3.11), we get that |(T F )(x)| ≤ ‖K‖C(E×D)λ(D) for all F ∈ U and

all x ∈ E. Hence, T U is pointwise bounded (and, actually, also uniformly bounded).

Furthermore, the Cauchy–Schwarz inequality yields∣∣(T F )(x)− (T F )
(
x′
)∣∣2 =

∣∣∣∣∫
D

(
K(x, y)−K

(
x′, y

))
F (y) dy

∣∣∣∣2 (3.12)

≤
∫
D

(
K(x, y)−K

(
x′, y

))2
dy

∫
D

(F (y))2 dy .

Let now ε > 0 be arbitrary. Since E ×D is compact and K is continuous, the kernel

K is also uniformly continuous, that is we find a δ > 0 such that the following

implication is valid (if λ(D) = 0, then T = 0 and the compactness is trivial):∣∣(x, y)−
(
x′, y′

)∣∣ < δ ⇒
∣∣K(x, y)−K

(
x′, y′

)∣∣ < ε

λ(D)
.
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In particular, we have the implication:∣∣x− x′∣∣ < δ, y ∈ D arbitrary ⇒
∣∣K(x, y)−K

(
x′, y

)∣∣ < ε

λ(D)
.

Consequently, if we have x, x′ ∈ E with |x− x′| < δ, then we get, due to (3.12), that

∣∣(T F )(x)− (T F )
(
x′
)∣∣2 ≤ λ(D)

ε2

λ(D)2
‖F‖2L2(D) . (3.13)

Moreover, each F ∈ U satisfies

‖F‖L2(D) =

√∫
D
F (x)2 dx ≤ ‖F‖C(D)

√
λ(D) =

√
λ(D) . (3.14)

Combining Equations (3.13) and (3.14), we see that all x, x′ ∈ E with |x − x′| < δ

satisfy ∣∣(T F )(x)− (T F )
(
x′
)∣∣ ≤ ε for each F ∈ U .

Hence, T U is equicontinuous.

In total, we get that T U is a relatively compact set and, consequently, T is a

compact operator.

3.10 For proving that T F ∈ L2(E), we need to show that T F has a finite norm in this

space (because of the definition of L2(E)). With the Cauchy–Schwarz inequality, we

obtain

‖T F‖2L2(E) =

∫
E

[(T F )(x)]2 dx =

∫
E

[∫
D
K(x, y)F (y) dy

]2

dx

≤
∫
E

∫
D
K(x, y)2 dy

∫
D
F (y)2 dy dx

=

∫
E×D

K(x, y)2 d(x, y)

∫
D
F (y)2 dy

= ‖K‖2L2(E×D)‖F‖2L2(D) < +∞ . (3.15)

Equation (3.15) also shows that T is a bounded operator.

Let now U be the unit sphere in L2(D) and let (Fn) be an arbitrary sequence in

U . Then (Fn) has a weakly convergent subsequence. Without loss of generality, we

assume that (Fn) is already this subsequence. The weak limit is denoted by F . Since∫
E

∫
DK(x, y)2 dy dx < +∞, Fubini’s theorem tells us that

∫
DK(x, y)2 dy < +∞ for

almost all x ∈ E, that is K(x, ·) ∈ L2(D) for almost every x ∈ E.

For every such x, we obtain

lim
n→∞

(T Fn) (x) = lim
n→∞

∫
D
K(x, y)Fn(y) dy

= lim
n→∞

〈K(x, ·), Fn〉L2(D)

= 〈K(x, ·), F 〉L2(D)

= (T F )(x)
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and, in analogy to (3.15), also

|(T Fn) (x)|2 =

∣∣∣∣∫
D
K(x, y)Fn(y) dy

∣∣∣∣2 ≤ ∫
D
K(x, y)2 dy︸ ︷︷ ︸

=:G(x)

‖Fn‖2L2(D)︸ ︷︷ ︸
=1

.

Hence, |(T Fn)(x)|2 ≤ G(x) and [(T Fn)(x)]2 → [(T F )(x)]2 for almost every x ∈ E,

where
∫
E G(x) dx < +∞. Thus, the dominated convergence theorem allows us to

conclude that

lim
n→∞

∫
E

[(T Fn) (x)]2 dx =

∫
E

[(T F ) (x)]2 dx . (3.16)

Furthermore, with the weak convergence, we see that every H ∈ L2(E) satisfies

〈T Fn, H〉L2(E) = 〈Fn, T ∗H〉L2(D) → 〈F, T ∗H〉L2(D) = 〈T F,H〉L2(E) .

Consequently, T Fn ⇀ T F , that is we have a weak convergence in L2(E). This weak

convergence in combination with (3.16) leads us to the strong convergence T Fn → T F
in L2(E). This result means that the sequence (T Fn) strongly converges to a limit in

T U . Due to the arbitrariness of the choice of the (sub-)sequence (Fn) ⊂ U , we obtain

that T U is relatively compact and, therefore, T is a compact operator.

3.11 a) We first calculate the single layer potential along the x3-axis by using the polar

coordinates

y1 = r cosϕ , y2 = r sinϕ , y3 = 0 (3.17)

with r ∈ [0, 1] and ϕ ∈ [0, 2π]. We get

Ps (0, 0, x3) =

∫
D

1√
y2

1 + y2
2 + (x3 − y3)2

dω(y)

=

∫ 1

0

∫ 2π

0

r√
r2 + x2

3

dϕdr = 2π
√
r2 + x2

3

∣∣∣∣r=1

r=0

= 2π

(√
1 + x2

3 − |x3|
)
. (3.18)

Note the absolute value in (3.18). The limits of the normal derivatives then become

∂ν+Ps(0) = lim
t→0+

[ν(0) · ∇Ps(0 + tν(0))] = lim
t→0+

(
∂

∂x3
P (x)

)∣∣∣∣
x=(0,0,t)

= lim
t→0+

∂

∂t

[
2π
(√

1 + t2 − |t|
)]

= lim
t→0+

[
2π

(
t√

1 + t2
− 1

)]
= −2π

and, analogously,

∂ν−Ps(0) = lim
t→0+

∂

∂t

[
2π
(√

1 + t2 − (−t)
)]

= lim
t→0+

[
2π

(
t√

1 + t2
+ 1

)]
= 2π .

Consequently, the jump is

∂ν+Ps(0)− ∂ν−Ps(0) = −4π = −4πF (0) .
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b) By using again the polar coordinates (3.17), we obtain the double layer potential

Pd (0, 0, x3) =

∫
D

x3 − y3

|x− y|3 dω(y)

=

∫ 1

0
r

∫ 2π

0

x3(
r2 + x2

3

)3/2 dϕdr = 2πx3

∫ 1

0

r(
r2 + x2

3

)3/2 dr

= 2πx3

(
− 1√

r2 + x2
3

)∣∣∣∣∣
r=1

r=0

= −2πx3

(
1√

1 + x2
3

− 1

|x3|

)

= −2π

(
x3√

1 + x2
3

− sgnx3

)
.

With the resulting limits

lim
t→0+

Pd(0, 0, t) = −2π(0− 1) = 2π ,

lim
t→0−

Pd(0, 0, t) = −2π(0 + 1) = −2π ,

we obtain the jump

(Pd)+ (0)− (Pd)− (0) = 4π = 4πF (0) .

3.12 For x ∈ BR(0) and y ∈ SR(0), we have the inequalities

|x− y| ≤ |x|+ |y| = |x|+R , (3.19)

|x− y| ≥ ||x| − |y|| = |y| − |x| = R− |x| . (3.20)

Moreover, clearly,

R2 − |x|2 = (R− |x|)(R+ |x|) . (3.21)

Due to the requirements on U , this function must fulfil the Poisson integral formula

(in the version for the IDP-solution). With this formula as well as (3.20), (3.21), and

Gauß’s mean value theorem, we obtain

U(x) =

∫
SR(0)

U(y)
R2 − |x|2

4πR|x− y|3 dω(y)

≤
∫
SR(0)

U(y)
R2 − |x|2
(R− |x|)3

1

4πR
dω(y)

=
R+ |x|

(R− |x|)2

1

4πR

∫
SR(0)

U(y) dω(y)

=
R+ |x|

(R− |x|)2
RU(0) .

Analogously, with (3.19) instead of (3.20), we get

U(x) ≥ R− |x|
(|x|+R)2

1

4πR

∫
SR(0)

U(y) dω(y)

=
R− |x|

(|x|+R)2
RU(0) .
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3.13 Let U : R3 → R be harmonic and non-negative. Then U fulfils the conditions for

Harnack’s inequality in every ball BR(0). Hence, we get for an arbitrary but fixed

x ∈ R3 the inequality

R
R− |x|

(R+ |x|)2
U(0) ≤ U(x) ≤ R R+ |x|

(R− |x|)2
U(0)

for all R > |x|. Cancelling R2 leads us to

1− |x|R(
1 + |x|

R

)2 U(0) ≤ U(x) ≤ 1 + |x|
R(

1− |x|R
)2 U(0)

for all R > |x|. In the limit R→∞, we get

U(0) ≤ U(x) ≤ U(0) .

Since x was arbitrary, we obtain U(x) = U(0) for all x ∈ R3.

3.14 Let Br(x0) ⊂ R be an arbitrary closed ball inside the region and let V be the solution

of the IDP

∆V = 0 in Br (x0) , V = U on Sr (x0) .

Since V is harmonic, it has Gauß’s mean value property on Br(x0) (and all balls

which are subsets of it). Hence, this also holds true for U − V .

In the proof of maximum principle I, we only used the following facts: the domain

is a region and the function is continuous and has Gauß’s mean value property on the

domain. Here, Br(x0) is the considered domain and we get, in analogy to the proof of

the maximum principle, that U − V is either constant or it has neither a maximum

nor a minimum in Br(x0). However, since U−V vanishes identically on the boundary

Sr(x0), this must also be the case in the interior of the ball and, consequently, U ≡ V
on Br(x0). Hence, U is harmonic on Br(x0). Since R is open, every x0 ∈ R possesses

a ball Br(x0) with Br(x0) ⊂ R. Thus, U is harmonic on the entire set R.

3.15 Note that the standard theorem from real analysis on the interchanging of a limit

and a differentiation is not applicable here, because this theorem requires the uniform

convergence of the sequence of the derivatives. Therefore, we have to choose a different

way to prove the proposition.

Let (Uk) be a sequence of harmonic functions on R such that this sequence uni-

formly converges to a function V : R → R. Due to the harmonicity, each Uk has

Gauß’s mean value property on every Br(x0) ⊂ R. Since (Uk) uniformly converges to

V , the limit limk→∞ may be interchanged with the integration in Gauß’s mean value

property. Hence, V also has this property (again in every closed ball contained in R).

Moreover, V is a uniform limit of a sequence of continuous functions and is, there-

fore, also continuous. Hence, Exercise 3.14 tells us that V must be harmonic.

3.16 A corresponding figure can be found in the book for comparison.

3.17 With the chain rule, we obtain∂U
∂r

∂U
∂ϕ

 =

 ∂x
∂r

∂y
∂r

∂x
∂ϕ

∂y
∂ϕ

∂U
∂x

∂U
∂y

 =

 cosϕ sinϕ

−r sinϕ r cosϕ

∂U
∂x

∂U
∂y

 .
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By inverting the matrix, we get∂U
∂x

∂U
∂y

 =
1

r

r cosϕ − sinϕ

r sinϕ cosϕ

∂U
∂r

∂U
∂ϕ


such that

∂U

∂x
= cosϕ

∂U

∂r
− 1

r
sinϕ

∂U

∂ϕ
,

∂U

∂y
= sinϕ

∂U

∂r
+

1

r
cosϕ

∂U

∂ϕ
.

For the second-order derivatives we use the results from above and again the chain

rule and we arrive at

∂2U

∂x2
= cosϕ

∂

∂r

∂U

∂x
− 1

r
sinϕ

∂

∂ϕ

∂U

∂x
(3.22)

= cosϕ

(
cosϕ

∂2U

∂r2
+

1

r2
sinϕ

∂U

∂ϕ
− 1

r
sinϕ

∂2U

∂r∂ϕ

)
− 1

r
sinϕ

(
− sinϕ

∂U

∂r
+ cosϕ

∂2U

∂ϕ∂r
− 1

r
cosϕ

∂U

∂ϕ
− 1

r
sinϕ

∂2U

∂ϕ2

)
and

∂2U

∂y2
= sinϕ

∂

∂r

∂U

∂y
+

1

r
cosϕ

∂

∂ϕ

∂U

∂y
(3.23)

= sinϕ

(
sinϕ

∂2U

∂r2
− 1

r2
cosϕ

∂U

∂ϕ
+

1

r
cosϕ

∂2U

∂r∂ϕ

)
+

1

r
cosϕ

(
cosϕ

∂U

∂r
+ sinϕ

∂2U

∂ϕ∂r
− 1

r
sinϕ

∂U

∂ϕ
+

1

r
cosϕ

∂2U

∂ϕ2

)
.

By summing up (3.22) and (3.23), we obtain the Laplacian of U :

∆U =
∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2

∂2U

∂ϕ2
.

3.18 With Exercise 3.17, we can write the 2D Laplace equation in polar coordinates as

follows (for (x, y) 6= (0, 0)):

∆U = 0⇔ F ′′(r)Y (ϕ) +
1

r
F ′(r)Y (ϕ) +

1

r2
F (r)Y ′′(ϕ) = 0

⇔ r2F ′′(r)Y (ϕ) + rF ′(r)Y (ϕ) = −F (r)Y ′′(ϕ)

⇔ r2 F
′′(r)

F (r)
+ r

F ′(r)

F (r)
= −Y

′′(ϕ)

Y (ϕ)
,

where the latter identity holds true outside zeros of U . In the latter identity, we see

that the left-hand side only depends on the radial coordinate and the right-hand side

only depends on the angular coordinate. Hence, both sides must be constant. Thus,

there is a constant C ∈ R such that

r2F ′′(r) + rF ′(r) = CF (r) , (3.24)

Y ′′(ϕ) = −CY (ϕ) (3.25)

for all r ∈ [0, R] and all ϕ ∈ [0, 2π] — the missing points (r, ϕ) can be included by
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a continuous extension. For (3.25), we use (in analogy to the 3D-case) the argument

that U and, consequently, Y need to be 2π-periodic in ϕ such that only solutions of

the type

Y (ϕ) = aj cos(jϕ) + bj sin(jϕ) , ϕ ∈ [0, 2π] ,

for arbitrary constants aj , bj ∈ R and j ∈ N0 (with C = j2) are admissible. The

particular case C = 0 refers to a constant solution. For (3.24) with a fixed C = j2,

we use the power series ansatz F (r) =
∑∞

n=0 cnr
n, which yields

∞∑
n=0

cnn(n− 1)rn +

∞∑
n=0

cnnr
n = j2

∞∑
n=0

cnr
n

⇔ cn
(
n2 − n+ n

)
= j2cn for all n ∈ N0

⇔ cn = 0 for all n ∈ N0 \ {j} with arbitrary cj .

We get F (r) = cjr
j . Since (3.24) is of order 2, we need a second solution which is

linearly independent to the known solution. It is easy to see that F (r) = log r works

for j = 0 and F (r) = r−j works for j > 0. However, each one does not exist in r = 0.

Hence, F (r) = crj with arbitrary c ∈ R is the general solution. It suffices here to

choose c = 1. Thus, we obtain the general solution of the 2D Laplace equation as

follows:

U(x, y)|(x,y)=(x(r,ϕ),y(r,ϕ)) =
∞∑
j=0

ajr
j cos(jϕ) +

∞∑
j=1

bjr
j sin(jϕ)

with arbitrary constants aj , bj ∈ R.



4

Basis Functions

Exercises

4.1 We start with ∇∗ · ∇∗. For the calculation, we basically need the product rule and

the formulae for the derivatives of the local orthonormal basis εr, εϕ, εt. In detail,

we get

∇∗ · ∇∗F

=

(
εϕ

1√
1− t2

∂

∂ϕ
+ εt

√
1− t2 ∂

∂t

)
·
(
εϕ

1√
1− t2

∂

∂ϕ
+ εt

√
1− t2 ∂

∂t

)
F

=
1√

1− t2
εϕ ·

(
∂

∂ϕ
εϕ
)

1√
1− t2

∂

∂ϕ
F +

1√
1− t2

εϕ · εϕ 1√
1− t2

∂2

∂ϕ2
F

+
1√

1− t2
εϕ ·

(
∂

∂ϕ
εt
)√

1− t2 ∂

∂t
F +

1√
1− t2

εϕ · εt
√

1− t2 ∂2

∂ϕ∂t
F

+
√

1− t2 εt ·
(
∂

∂t
εϕ
)

1√
1− t2

∂

∂ϕ
F +

√
1− t2 εt · εϕ ∂

∂t

(
1√

1− t2
∂

∂ϕ
F

)
+
√

1− t2 εt ·
(
∂

∂t
εt
)√

1− t2 ∂

∂t
F +

√
1− t2 εt · εt ∂

∂t

(√
1− t2 ∂

∂t
F

)
=

1

1− t2
∂2

∂ϕ2
F − t ∂

∂t
F +

√
1− t2 ∂

∂t

(√
1− t2 ∂

∂t
F

)
=

1

1− t2
∂2

∂ϕ2
F − t ∂

∂t
F +

√
1− t2 −t√

1− t2
∂

∂t
F +

(√
1− t2

)2 ∂2

∂t2
F

=
1

1− t2
∂2

∂ϕ2
F − 2t

∂

∂t
F +

(
1− t2

) ∂2

∂t2
F

=
1

1− t2
∂2

∂ϕ2
F +

∂

∂t

[(
1− t2

) ∂
∂t
F

]
= ∆∗F .

The calculation of L∗ · L∗ is essentially analogous to the calculations above. We get

L∗ · L∗F

=

(
−εϕ

√
1− t2 ∂

∂t
+ εt

1√
1− t2

∂

∂ϕ

)
·
(
−εϕ

√
1− t2 ∂

∂t
+ εt

1√
1− t2

∂

∂ϕ

)
F

=
√

1− t2 εϕ · εϕ ∂
∂t

(√
1− t2 ∂

∂t
F

)
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−
√

1− t2 εϕ · ∂
∂t
εt

1√
1− t2

∂

∂ϕ
F −

√
1− t2 εϕ · εt ∂

∂t

(
1√

1− t2
∂

∂ϕ
F

)
− 1√

1− t2
εt · ∂

∂ϕ
εϕ
√

1− t2 ∂

∂t
F − 1√

1− t2
εt · εϕ

√
1− t2 ∂2

∂ϕ∂t
F

+
1√

1− t2
εt · ∂

∂ϕ
εt

1√
1− t2

∂

∂ϕ
F +

1√
1− t2

εt · εt 1√
1− t2

∂2

∂ϕ2
F

=
√

1− t2
( −t√

1− t2
∂

∂t
F +

√
1− t2 ∂2

∂t2
F

)
− t√

1− t2
√

1− t2 ∂

∂t
F

+
1√

1− t2
1√

1− t2
∂2

∂ϕ2
F

= −t ∂
∂t
F +

(
1− t2

) ∂2

∂t2
F − t ∂

∂t
F +

1

1− t2
∂2

∂ϕ2
F

=
1

1− t2
∂2

∂ϕ2
F +

∂

∂t

[(
1− t2

) ∂
∂t
F

]
= ∆∗F .

4.2 We derive the formulae for the fully normalized spherical harmonics. We have

Yn,j(ξ(ϕ, t)) = cn,j Pn,|j|(t)Gj(ϕ) ,

where

cn,j :=

√
(2n+ 1)(n− |j|)!(2− δj0)

4π(n+ |j|)! ,

Pn,j(t) =
1

2nn!

(
1− t2

)j/2 dn+j

dtn+j

(
t2 − 1

)n
=
(
1− t2

)j/2 dj

dtj
Pn(t) ,

and

Gj(ϕ) :=

{
cos(jϕ), for j = −n, . . . , 0 ,
sin(jϕ), for j = 1, . . . , n .

The degree 0 case is easy:

Y0,0 ≡
1√
4π

.

The scalar case of degree 1 corresponds to the functions

Y1,0(ξ(ϕ, t)) =

√
3

4π
t =

√
3

4π
ξ3 ,

Y1,−1(ξ(ϕ, t)) =

√
3 · 2

4π · 2
√

1− t2 · 1 · cosϕ =

√
3

4π
(1− t2) cosϕ =

√
3

4π
ξ1

Y1,1(ξ(ϕ, t)) =

√
3

4π
(1− t2) sinϕ =

√
3

4π
ξ2 .

Amongst the vector spherical harmonics, there is only one type which belongs to

degree 0:

y
(1)
0,0(ξ(ϕ, t)) = ξ Y0,0 =

1√
4π

ξ1

ξ2

ξ3

 =
1√
4π


√

1− t2 cosϕ√
1− t2 sinϕ

t

 .
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We continue with degree 1 and start with order 0. We get (the arguments of some

functions on the right-hand side are omitted for reasons of readability and brevity)

y
(1)
1,0(ξ(ϕ, t)) = ξ Y1,0 =

√
3

4π

t
√

1− t2 cosϕ

t
√

1− t2 sinϕ

t2

 =

√
3

4π

ξ1ξ3

ξ2ξ3

ξ2
3

 ,

y
(2)
1,0(ξ(ϕ, t)) =

1√
2
∇∗Y1,0 =

1√
2

1√
1− t2

(
∂

∂ϕ
Y1,0

)
εϕ +

√
1− t2

2

(
∂

∂t
Y1,0

)
εt

=

√
1− t2

2

√
3

4π

−t cosϕ

−t sinϕ√
1− t2

 =

√
3

8π

−t
√

1− t2 cosϕ

−t
√

1− t2 sinϕ

1− t2


=

√
3

8π

−ξ1ξ3

−ξ2ξ3

1− ξ2
3

 ,

y
(3)
1,0(ξ(ϕ, t)) = ξ × y(2)

1,0 =

√
3

8π

 ξ2 − ξ2ξ
2
3 + ξ2ξ

2
3

−ξ1ξ
2
3 − ξ1 + ξ1ξ

2
3

−ξ1ξ2ξ3 + ξ1ξ2ξ3


=

√
3

8π

 ξ2

−ξ1

0

 =

√
3

8π


√

1− t2 sinϕ

−
√

1− t2 cosϕ

0

 .

For the orders ±1, we obtain

y
(1)
1,1(ξ(ϕ, t)) = ξ Y1,1 =

√
3

4π

ξ1ξ2

ξ2
2

ξ2ξ3

 =

√
3

4π


(
1− t2

)
cosϕ sinϕ(

1− t2
)

sin2 ϕ

t
√

1− t2 sinϕ

 ,

y
(1)
1,−1(ξ(ϕ, t)) = ξ Y1,−1 =

√
3

4π

 ξ2
1

ξ1ξ2

ξ1ξ3

 =

√
3

4π


(
1− t2

)
cos2 ϕ(

1− t2
)

cosϕ sinϕ

t
√

1− t2 cosϕ


for the normal vector fields, whereas the tangential vector fields of type 2 are

y
(2)
1,1(ξ(ϕ, t)) =

1√
2
∇∗Y1,1 =

1√
2

1√
1− t2

(
∂

∂ϕ
Y1,1

)
εϕ +

√
1− t2

2

(
∂

∂t
Y1,1

)
εt

=
1√
2

1√
1− t2

√
3

4π
(1− t2) cosϕεϕ

+

√
1− t2

2

√
3

4π

−t√
1− t2

sinϕεt

=

√
3

8π

(
cosϕεϕ − t sinϕεt

)
=

√
3

8π

− sinϕ cosϕ+ t2 sinϕ cosϕ

cos2 ϕ+ t2 sin2 ϕ

0− t
√

1− t2 sinϕ


=

√
3

8π


(
t2 − 1

)
sinϕ cosϕ

cos2 ϕ+ t2 sin2 ϕ

−t
√

1− t2 sinϕ

 =

√
3

8π

−ξ1ξ2

1− ξ2
2

−ξ2ξ3

 ,
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y
(2)
1,−1(ξ(ϕ, t)) =

1√
2
∇∗Y1,−1 =

1√
2

1√
1− t2

(
∂

∂ϕ
Y1,−1

)
εϕ +

√
1− t2

2

(
∂

∂t
Y1,−1

)
εt

= − 1√
2

1√
1− t2

√
3

4π
(1− t2) sinϕεϕ

+

√
1− t2

2

√
3

4π

−t√
1− t2

cosϕεt

=

√
3

8π

(
− sinϕεϕ − t cosϕεt

)
,

=

√
3

8π

 sin2 ϕ+ t2 cos2 ϕ

− sinϕ cosϕ+ t2 sinϕ cosϕ

0− t
√

1− t2 cosϕ


=

√
3

8π

 sin2 ϕ+ t2 cos2 ϕ(
t2 − 1

)
sinϕ cosϕ

−t
√

1− t2 cosϕ

 =

√
3

8π

1− ξ2
1

−ξ1ξ2

−ξ1ξ3

 ,

because cos2 ϕ+ t2 sin2 ϕ = 1− sin2 ϕ+ t2 sin2 ϕ = 1− (1− t2) sin2 ϕ (and analogously

for exchanged sin and cos). Eventually, the missing functions of type 3 are

y
(3)
1,1(ξ(ϕ, t)) = ξ × y(2)

1,1 =

√
3

8π

−ξ2
2ξ3 − ξ3 + ξ2

2ξ3

−ξ1ξ2ξ3 + ξ1ξ2ξ3

ξ1 − ξ1ξ
2
2 + ξ1ξ

2
2


=

√
3

8π

−ξ3

0

ξ1

 =

√
3

8π

 −t
0√

1− t2 cosϕ

 ,

y
(3)
1,−1(ξ(ϕ, t)) = ξ × y(2)

1,−1 =

√
3

8π

−ξ1ξ2ξ3 + ξ1ξ2ξ3

ξ3 − ξ2
1ξ3 + ξ2

1ξ3

−ξ2
1ξ2 − ξ2 + ξ2

1ξ2


=

√
3

8π

 0

ξ3

−ξ2

 =

√
3

8π

 0

t

−
√

1− t2 sinϕ

 .

4.3 The term from the addition theorem for spherical harmonics is the searched repro-

ducing kernel: for all Yn ∈ Harmn(Ω) and ξ ∈ Ω, we obtain∫
Ω

2n+ 1

4π
Pn(ξ · η)Yn(η) dω(η) =

n∑
j=−n

Yn,j(ξ)

∫
Ω
Yn,j(η)Yn(η) dω(η)

=

n∑
j=−n

Yn,j(ξ) 〈Yn,j , Yn〉L2(Ω)

= Yn(ξ) ,

because {Yn,j}j=−n,...,n is an orthonormal basis of (Harmn(Ω), 〈·, ·〉L2(Ω)).

4.4 For arbitrary but fixed ξ, η, ζ ∈ Ω and each degree n ∈ N0, we find a τ ∈ [−1, 1], by

using the mean value theorem of differentiation, such that

|Pn(ξ · ζ)− Pn(η · ζ)| =
∣∣P ′n(τ)

∣∣ |ξ · ζ − η · ζ|
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≤
∥∥P ′n∥∥C[−1,1]

|(ξ − η) · ζ|
≤
∥∥P ′n∥∥C[−1,1]

|ξ − η| |ζ| . (4.1)

It remains to estimate the maximum norm of P ′n. We already know that P ′n(1) =

n(n+ 1)/2. We show that this is (just like for the 0-th derivative) also the maximum

norm on [−1, 1]. From one of the recurrence formulae of the Legendre polynomials,

we see that

P ′n+1(x) = (2n+ 1)Pn(x) + P ′n−1(x) (4.2)

for all n ∈ N and x ∈ [−1, 1]. Obviously, P ′0 ≡ 0 = 0(0+1)/2 and P ′1 ≡ 1 = 1(1+1)/2

such that a simple induction applied to (4.2) yields∣∣P ′n+1(x)
∣∣ ≤ (2n+ 1) |Pn(x)|+

∣∣P ′n−1(x)
∣∣

≤ 2n+ 1 +
(n− 1)n

2
=

4n+ 2 + n2 − n
2

=
(n+ 1)(n+ 2)

2

and, therefore, ∣∣P ′n(x)
∣∣ ≤ n(n+ 1)

2
for all x ∈ [−1, 1] and n ∈ N0 . (4.3)

Hence, the combination of (4.1) and (4.3) leads us to

|Pn(ξ · ζ)− Pn(η · ζ)| ≤ n(n+ 1)

2
|ξ − η| .

4.5 From the Sobolev lemma, we know that functions in Hs(Ω), s > 1, have uniformly

convergent Fourier series in the Yn,j-functions. For arbitrary F ∈ Hs(Ω), s > 2, and

ξ, η ∈ Ω, we obtain then, by using the Cauchy–Schwarz inequality, the definition of

the ‖ · ‖Hs(Ω)-norm, the addition theorem for spherical harmonics, and Exercise 4.4,

that

|F (ξ)− F (η)|2 =

∣∣∣∣∣∣
∞∑
n=0

n∑
j=−n

F∧(n, j) (Yn,j(ξ)− Yn,j(η))

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∞∑
n=0

n∑
j=−n

(
n+

1

2

)s(
n+

1

2

)−s
F∧(n, j) (Yn,j(ξ)− Yn,j(η))

∣∣∣∣∣∣
2

≤

 ∞∑
n=0

n∑
j=−n

(
n+

1

2

)2s (
F∧(n, j)

)2
×

 ∞∑
n=0

n∑
j=−n

(
n+

1

2

)−2s

(Yn,j(ξ)− Yn,j(η))2


= ‖F‖2Hs(Ω)

∞∑
n=0

(
n+

1

2

)−2s n∑
j=−n

(
(Yn,j(ξ))

2 − 2Yn,j(ξ)Yn,j(η) + (Yn,j(η))2
)

= ‖F‖2Hs(Ω)

∞∑
n=0

(
n+

1

2

)−2s 2n+ 1

4π
2 (Pn(1)− Pn(ξ · η))
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≤ ‖F‖2Hs(Ω)

∞∑
n=0

(
n+

1

2

)−2s 2n+ 1

4π
2P ′n(1) (1− ξ · η)

= ‖F‖2Hs(Ω)

∞∑
n=0

(
n+

1

2

)−2s 2n+ 1

4π
2
n(n+ 1)

2

1

2
|ξ − η|2 .

Hence,

|F (ξ)− F (η)| ≤ ‖F‖Hs(Ω)

(
1

2

∞∑
n=1

2n+ 1

4π

n(n+ 1)

(n+ 1/2)2s

)1/2

|ξ − η| .

The summand for n = 0 vanishes. The Lipschitz constant is finite, because its

summands are of the order O(n1+2−2s) = O(n3−2s), where s > 2 and, therefore,

3− 2s < −1.

4.6 Previously, we had already derived a formula for ∇∗⊗∇∗H + L∗⊗L∗H. If we follow

this derivation and replace ‘+’ at the appropriate places by ‘−’, then we obtain

∇∗ ⊗∇∗H − L∗ ⊗ L∗H

= εϕ ⊗ εr
(
− 1√

1− t2
∂H

∂ϕ
− 1√

1− t2
∂H

∂ϕ

)
+ εϕ ⊗ εt

(
t

1− t2
∂H

∂ϕ
+
∂2H

∂ϕ∂t
+

t

1− t2
∂H

∂ϕ
+
∂2H

∂t∂ϕ

)
+ εϕ ⊗ εϕ

(
1

1− t2
∂2H

∂ϕ2
− t∂H

∂t
+ t

∂H

∂t
−
(
1− t2

) ∂2H

∂t2

)
+ εt ⊗ εϕ

(
t

1− t2
∂H

∂ϕ
+
∂2H

∂t∂ϕ
+

t

1− t2
∂H

∂ϕ
+
∂2H

∂ϕ∂t

)
+ εt ⊗ εr

(
−
√

1− t2 ∂H
∂t
−
√

1− t2 ∂H
∂t

)
+ εt ⊗ εt

(
−t ∂H

∂t
+
(
1− t2

) ∂2H

∂t2
− 1

1− t2
∂2H

∂ϕ2
+ t

∂H

∂t

)
.

Hence, the subtraction of the transposed tensor leads us to

(∇∗ ⊗∇∗H − L∗ ⊗ L∗H)− (∇∗ ⊗∇∗H − L∗ ⊗ L∗H)T

= (εϕ ⊗ εr − εr ⊗ εϕ)

(
− 2√

1− t2
∂H

∂ϕ

)
+
(
εt ⊗ εr − εr ⊗ εt

)(
−2
√

1− t2 ∂H
∂t

)
= 2 [εr ⊗∇∗H − (∇∗H)⊗ εr] .



5

Inverse Problems

Exercises

5.1 The equation ∆x(F (x)|x|−p) = 0 in BR(0) is solved, if and only if the function

BR(0) 3 x 7→ F (x)|x|−p can be expanded in inner harmonics. This, however, is equiv-

alent to the fact that F is expandable in the functions BR(0) 3 x 7→ |x|n+pYn,j(x/|x|).
In the notation of the ansatz which we used for the inverse gravimetric problem, this

means that Fn,j(r) = fn,jr
n+p+1 for arbitrary constants fn,j . By inserting this into

the spectral formula which we derived, we arrive at

4πG

2n+ 1
fn,j

∫ R

0
r2n+p+2 dr = Vn,j(R+ ε)n for all n, j .

This holds true, if and only if

4πG

2n+ 1
fn,j

R2n+p+3

2n+ p+ 3
= Vn,j(R+ ε)n for all n, j . (5.1)

By resolving (5.1) for fn,j , we obtain the unique solution

F (x) =
∞∑
n=0

(2n+ p+ 3)
(R+ ε)n

R2n+p+3

2n+ 1

4πG
|x|n+p

n∑
j=−n

Vn,jYn,j

(
x

|x|

)
.

5.2 Again we transfer the scenario to the notation of the ansatz which we used for the

inverse gravimetric problem. We get Fn,j(r) = FL
n,jr for r ∈ [τ, τ + δ] and Fn,j(r) = 0

else. The insertion into the spectral formula yields here

4πG

2n+ 1

∫ τ+δ

τ
rn+2 dr FL

n,j = Vn,j(R+ ε)n for all n, j

⇔ 4πG

2n+ 1

(τ + δ)n+3 − τn+3

n+ 3
FL
n,j = Vn,j(R+ ε)n for all n, j .

Hence,

FL
n,j = Vn,j

2n+ 1

4πG
(n+ 3)

(R+ ε)n

(τ + δ)n+3 − τn+3
for all n, j .

5.3 Let us start with the properties of an inner product. For the positive definiteness, we

see that 〈(
x

y

)
,

(
x

y

)〉
X×Y

= 〈x, x〉X + 〈y, y〉Y = ‖x‖2X + ‖y‖2Y ≥ 0 , (5.2)

because 〈·, ·〉X and 〈·, ·〉Y are inner products. For the same reason, the term in (5.2)
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can only vanish if both summands ‖x‖2X and ‖y‖2Y vanish, which is true if and only

if x = 0 and y = 0.

Regarding the symmetry, we observe that〈(
x1

y1

)
,

(
x2

y2

)〉
X×Y

= 〈x1, x2〉X + 〈y1, y2〉Y

= 〈x2, x1〉X + 〈y2, y1〉Y =

〈(
x2

y2

)
,

(
x1

y1

)〉
X×Y

,

because 〈·, ·〉X and 〈·, ·〉Y are inner products.

For the bilinearity, we use again that the new mapping is composed out of inner

products. We get〈
r

(
x1

y1

)
+ s

(
x2

y2

)
,

(
x3

y3

)〉
X×Y

=

〈(
rx1 + sx2

ry1 + sy2

)
,

(
x3

y3

)〉
X×Y

= 〈rx1 + sx2, x3〉X + 〈ry1 + sy2, y3〉Y
= r〈x1, x3〉X + s〈x2, x3〉X + r〈y1, y3〉Y + s〈y2, y3〉Y
= r

(
〈x1, x3〉X + 〈y1, y3〉Y

)
+ s

(
〈x2, x3〉X + 〈y2, y3〉Y

)
= r

〈(
x1

y1

)
,

(
x3

y3

)〉
X×Y

+ s

〈(
x2

y2

)
,

(
x3

y3

)〉
X×Y

.

Finally, we need to show that the Cartesian product space is complete. For this

purpose, let ((xn, yn)T)n be an arbitrary Cauchy sequence in X × Y. This means

(where ∀ and ∃ represent, as usual, ‘for all’ and ‘there exists’):

∀ε > 0∃n0 ∀n,m ≥ n0 :

∥∥∥∥(xnyn
)
−
(
xm
ym

)∥∥∥∥2

< ε2 ,

that is

∀ε > 0 ∃n0 ∀n,m ≥ n0 : ‖xn − xm‖2X + ‖yn − ym‖2Y < ε2 .

This implies, in particular, that

∀ε > 0 ∃n0 ∀n,m ≥ n0 : ‖xn − xm‖X < ε and ‖yn − ym‖Y < ε .

Consequently, (xn)n is a Cauchy sequence in X and (yn)n is a Cauchy sequence

in Y. Since both spaces were assumed to be complete, there exist (strong) limits:

xn → ξ ∈ X and yn → η ∈ Y. In other words,

∀ε > 0 ∃n1, n2 ∀n ≥ n1, n
′ ≥ n2 : ‖xn − ξ‖X < ε and ‖yn′ − η‖Y < ε .

For each ε > 0, we set n3(ε) := max(n1(ε), n2(ε)). Then we get, for all n ≥ n3(ε):∥∥∥∥(xnyn
)
−
(
ξ

η

)∥∥∥∥
X×Y

=
√
‖xn − ξ‖2X + ‖yn − η‖2Y ≤

√
2ε2 =

√
2 ε .

Hence, (
xn
yn

)
−→

(
ξ

η

)
in X × Y

and (X × Y, 〈·, ·〉X×Y) is complete.
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5.4 We have the following equivalences (note that zk, ξ,PT ξ,Py ∈ Hn and P is self-

adjoint):

n∑
j=1

αj 〈T zj , zk〉 = 〈y, zk〉 for all k = 1, . . . , n

⇔ 〈T ξ, zk〉 = 〈y, zk〉 for all k = 1, . . . , n

⇔ 〈T ξ,Pzk〉 = 〈y,Pzk〉 for all k = 1, . . . , n

⇔ 〈PT ξ, zk〉 = 〈Py, zk〉 for all k = 1, . . . , n

⇔ PT ξ = Py
⇔ PT Pξ = Py .

5.5 We first show that the Moore–Penrose inverse T + fulfils the axioms. We already

know that T T + = PT (X )
. Moreover, with the decomposition of an arbitrary f ∈ X

into f = fk + fk⊥ , fk ∈ ker T , fk⊥ ∈ ker(T )⊥, we obtain analogously that T +T f =

T +T fk⊥ is the minimum-norm solution of

T ∗ T
(
T +T f

)︸ ︷︷ ︸
∈T (X )=ker(T ∗)⊥

= T ∗T f .

Hence,

T T +T f︸ ︷︷ ︸
∈T +(D(T +))=ker(T )⊥

= T f .

Consequently, we have

T +T f =
(
T |ker(T )⊥

)−1
T f =

(
T |ker(T )⊥

)−1
T fk⊥ = fk⊥ .

In total, we get

T +T = Pker(T )⊥ = PT +(D(T +)) = PT ∗(Y)
.

Furthermore, for arbitrary f ∈ X and g ∈ D(T +), we obtain

T T +T f = PT (X )
(T f) = T f

and

T +T T +g = PT +(D(T +))

(
T +g

)
= T +g

such that

T T +T = T and T +T T + = T + .

Let now S be an arbitrary operator which fulfils the Moore–Penrose axioms. If g ∈
D(T +) and h ∈ X are arbitrary, then the fourth axiom yields

〈T ∗T Sg − T ∗g, h〉X = 〈T Sg − g, T h〉Y =
〈
PT (X )

g − g, T h
〉
Y

=
〈
−P
T (X )

⊥g, T h
〉
Y

= 0 .

Thus, f := Sg solves the normal equation T ∗T f = T ∗g.
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We decompose, like above, f into f = fk + fk⊥ , fk ∈ ker T , fk⊥ ∈ ker(T )⊥. Since

the second axiom yields ST S = S, we must have ST Sg = Sg and, therefore, the

following chain of implications (where we use the third axiom):

⇒ ST (fk + fk⊥) = fk + fk⊥ ⇒ ST fk⊥ = fk + fk⊥

⇒ PT ∗(Y)
fk⊥︸ ︷︷ ︸

∈ker(T )⊥

= fk + fk⊥ ⇒ fk = 0

⇒ Sg ∈ ker(T )⊥ ⇒ Sg = T +g .

Hence, S = T +.

5.6 a) Since A is injective, we have kerA = {0}. On the other hand, we also have

kerA = A∗(X )⊥ = A(X )⊥, because A = A∗. Hence, A(X ) = X .

b) With the Cauchy–Schwarz inequality and the assumption on A, we have

‖Ax‖ ‖x‖ ≥ 〈Ax, x〉 ≥ γ‖x‖2 for all x ∈ X

such that

‖Ax‖ ≥ γ‖x‖ for all x ∈ X . (5.3)

Since A is injective, there exists an inverse A−1 : A(X ) → X . Due to (5.3), it is

continuous and we have∥∥A−1y
∥∥ ≤ 1

γ

∥∥AA−1y
∥∥ =

1

γ
‖y‖ for all y ∈ A(X )

such that ‖A−1‖ ≤ γ−1. We have already seen that injective, linear, and continuous

mappings between Hilbert spaces are continuously invertible on their image if and

only if the image is closed. In combination with part a, we see that this closed image

must be the whole space X . Thus, A is also surjective and we get the continuous

inverse A−1 : X → X .

5.7 Clearly, due to Fubini’s theorem, the adjoint operator is given by

(T ∗F ) (x) =

∫
D
k(y, x)F (y) dy , x ∈ D .

a) From Exercise 3.10, we know that the operator T is compact. Thus, Fredholm’s

theorem tells us that σp(T ) is finite or countable. Let now µ 6= 0 be an arbitrary

eigenvalue of T , that is ker(T − µI) % {0}.
Let us assume that the image of T − µI is given by L2(D) =: H (i.e. we assume

that T −µI is surjective). Then whichever element x0 ∈ [ker(T −µI)]\{0} we choose,

it is also an element of this image. Hence, there is x1 ∈ H with (T − µI)x1 = x0.

However, due to the assumed surjectivity, this initiates a never-ending recursion:

there is x2 ∈ H with (T −µI)x2 = x1 and so on. We obtain, consequently, a sequence

(xn)n ⊂ H with (T − µI)xn = xn−1 for all n.

We continue with another assumption: let us consider the case that the first l

elements, that is x0, . . . , xl−1, are linearly independent while the first l + 1 elements

are not, that is there exist α0, . . . , αl−1 such that xl =
∑l−1

k=0 αkxk. However, then we

get (by using the linearity of T and the construction of x0) that

xl−1 = (T − µI)xl =

l−1∑
k=0

αk(T − µI)xk =

l−1∑
k=1

αkxk−1 =

l−2∑
k=0

αk+1xk . (5.4)
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The result of (5.4) contradicts the linear independence of x0, . . . , xl−1. Hence, amongst

our nested assumptions, the inner one is false (for every l). Thus, all xn together are

still linearly independent (i.e. each finite subsystem is linearly independent).

We can now use the Gram–Schmidt orthonormalization to get orthonormal vectors

ek =
k∑
j=0

βk,jxj for all k .

The application of T yields

T ek =

k∑
j=0

βk,j(T − µI + µI)xj

= βk,0µx0 +

k∑
j=1

βk,j (xj−1 + µxj)

= µek +

k−1∑
j=0

βk,j+1xj ,

where
∑k−1

j=0 βk,j+1xj ∈ span {x0, . . . , xk−1} = span {e0, . . . , ek−1}. Hence, there exist

coefficients γk,j such that T ek =
∑k

j=0 γk,jej for each k, while γk,k = µ.

Let now k, l ∈ N0 where, without loss of generality, k > l. Then the orthonormality

of the ej yields

‖T ek − T el‖2 =
l∑

j=0

|γk,j − γl,j |2 +
k∑

j=l+1

|γk,j |2 ≥ |γk,k|2 . (5.5)

In our nested hierarchy of assumptions, the outer one now also obtains its contradic-

tion: since T is compact, the sequence (T ek)k must have a convergent subsequence

(which is, then, also a Cauchy subsequence). Hence, for each ε > 0, there exists k0

such that, for all k, l ≥ k0, we have ‖T ek − T el‖ < ε. In combination with (5.5) and

the fact that γk,k = µ for all k, we see that µ = 0 would have to hold true, which was

excluded.

Thus, we have (T − µI)(H) $ H and, since this image is closed according to

Fredholm’s theorem, there is a non-trivial orthogonal complement. Let, therefore,

x∗ ∈ [(T − µI)(H)]⊥ \ {0}. We get:

〈(T − µI)x, x∗〉 = 0 for all x ∈ H
⇔ 〈x, (T ∗ − µI)x∗〉 = 0 for all x ∈ H
⇔ (T ∗ − µI)x∗ = 0 ,

which means that µ is an eigenvalue of T ∗.
In the same way, we see that, if µ 6= 0 is an eigenvalue of T ∗, then µ = µ is an

eigenvalue of T ∗∗ = T .

b) From Fredholm’s theorem, we know that the null spaces ker(T − λI) and

ker(T ∗ − λI) are finite-dimensional with equal dimensions for λ 6= 0. This actually

concludes the proof of this proposition.

If we want to show the identity of the dimensions without using the corresponding

proposition from Fredholm’s theorem, then we can proceed as follows: let {x1, . . . , xn}
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be an orthonormal basis (onb) of ker(T − λI) and let {y1, . . . , ym} be an onb of

ker(T ∗−λI). Without loss of generality, we assume that n ≤ m (otherwise, exchange

T and T ∗). Let now S : H → H be defined by

Sx := T x−
n∑
j=1

〈x, xj〉 yj , x ∈ H . (5.6)

Since T is compact and the operator corresponding to the summation in (5.6) has a

finite-dimensional image and is, therefore, also compact, the operator S is compact

as well. Let now x ∈ ker(S − λI). Then

(T − λI)x = (T − S + S − λI)x =

n∑
j=1

〈x, xj〉 yj (5.7)

and, consequently, due to the orthonormality, (5.7), and the construction of the yk,〈
n∑
j=1

〈x, xj〉 yj , yk
〉

= 〈x, xk〉 = 〈(T − λI)x, yk〉

=
〈
x,
(
T ∗ − λI

)
yk
〉

= 0 for all k = 1, . . . , n .

Hence, (T −λI)x = 0 and x ∈ ker(T −λI). With the orthonormal basis, we see that

x =
n∑
j=1

〈x, xj〉xj = 0 .

Consequently, ker(S − λI) = {0} such that λ is not an eigenvalue of S. Since λ 6= 0

and S is compact (which implies that non-vanishing elements of the spectrum must

be eigenvalues), λ cannot be an element of the spectrum of T . Hence, in particular,

(S − λI)(H) = H.

Let us assume now that n < m, that is there exists yn+1 as an onb element. Due

to the considerations above, there exists z ∈ H with yn+1 = (S − λI)z. This implies

(by using again the orthonormality)

‖yn+1‖2 = 〈(S − λI)z, yn+1〉

=

〈
(T − λI)z −

n∑
j=1

〈z, xj〉 yj , yn+1

〉
=
〈
z,
(
T ∗ − λI

)
yn+1

〉
= 0 .

However, yn+1 = 0 cannot be a part of an onb, which is a contradiction. Consequently,

n = m.

c) The equation is solvable.⇔ G ∈ (T −λI)(H) = ker(T ∗−λI)⊥ ⇔ G⊥ ker(T ∗−
λI). Remember that, according to Fredholm’s theorem, (T − λI)(H) is closed.

d) The equation is solvable. ⇔ G ∈ (T ∗− λI)(H) = ker(T − λI)⊥ ⇔ G⊥ ker(T −
λI).

5.8 Since T is compact, it must have a singular-value decomposition

T x =
∑
n

σn〈x, un〉X vn , x ∈ X . (5.8)
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We set now p := (α + β)/β and q := (α + β)/α. Then, obviously, 1/p + 1/q =

(β + α)/(α+ β) = 1 and we may apply the Hölder inequality as follows:∥∥∥|T |βx∥∥∥2

X
=
∑
n

σ2β
n |〈x, un〉X |2

=
∑
n

(
σ2β
n |〈x, un〉X |2/p

)
|〈x, un〉X |2/q

≤
[∑

n

(
σ2β
n |〈x, un〉X |2/p

)p]1/p(∑
n

|〈x, un〉X |2q/q
)1/q

=

[∑
n

σ2(α+β)
n |〈x, un〉X |2

]β/(α+β)(∑
n

|〈x, un〉X |2
)α/(α+β)

.

Hence, by using the Bessel inequality in the last summation term, we get∥∥∥|T |βx∥∥∥
X
≤
∥∥∥|T |α+βx

∥∥∥β/(α+β)

X
‖x‖α/(α+β)

X .

5.9 The derivations are here rather simple. According to the assumptions, the singular-

value decomposition of T is given by (5.8).

a) Since the singular values of a compact operator tend to zero (or are only a finite

set), we get, for all x ∈ X , the inequality

‖T x‖2Y =
∑
n

σ2
n |〈x, un〉X |2 ≤ max

n
σ2
n︸ ︷︷ ︸

=σ2
1

∑
n

|〈x, un〉X |2︸ ︷︷ ︸
≤‖x‖2X

,

while ‖T u1‖Y = ‖σ1v1‖Y = σ1.

b) We start with the following expansions:

T ∗y =
∑
n

σn〈y, vn〉Yun ∈ T ∗(Y) ⊂ ker(T )⊥ , (5.9)

ϕ (T ∗T )x =
∑
n

ϕ
(
σ2
n

)
〈x, un〉Xun + ϕ(0)Pker(T )x ,

⇒ ϕ (T ∗T ) T ∗y =
∑
n

ϕ
(
σ2
n

)
σn〈y, vn〉Yun + 0 (5.10)

for all x ∈ X and y ∈ Y. Since (5.9) is the singular-value decomposition of T ∗, we

get, for all y ∈ Y, the identity

ϕ (T T ∗) y = ϕ (T ∗∗T ∗) y
=
∑
n

ϕ
(
σ2
n

)
〈y, vn〉Yvn + ϕ(0)Pker(T ∗)y .

Hence, since vn ∈ ker(T ∗)⊥ for all n, we obtain with (5.9) and (5.10) the identity

T ∗ϕ (T T ∗) y =
∑
n

σn

〈∑
k

ϕ
(
σ2
k

)
〈y, vk〉Yvk + ϕ(0)Pker(T ∗)y, vn

〉
Y

un

=
∑
n

σnϕ
(
σ2
n

)
〈y, vn〉Yun

= ϕ (T ∗T ) T ∗y for all y ∈ Y .
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c) Since we have

ψ (T ∗T )x =
∑
n

ψ
(
σ2
n

)
〈x, un〉Xun + ψ(0)Pker(T )x

for all x ∈ X , we also get

ϕ (T ∗T )ψ (T ∗T )x =
∑
n

ϕ
(
σ2
n

)
ψ
(
σ2
n

)
〈x, un〉Xun + ϕ(0)ψ(0)P2

ker(T )x ,

where the projection certainly fulfils P2
ker(T ) = Pker(T ). In analogy to part a, where

we complement {un}n in order to obtain an orthonormal basis for X , we obtain, by

using σn → 0 and the requirements on ϕ,ψ,

‖ϕ (T ∗T )ψ (T ∗T )‖ = max
({∣∣ϕ (σ2

n

)
ψ
(
σ2
n

)∣∣}
n
∪ {|ϕ(0)ψ(0)|}

)
= sup

{∣∣ϕ (σ2
n

)
ψ
(
σ2
n

)∣∣}
n

≤ sup
λ∈[0,‖T ‖2]

|ϕ(λ)ψ(λ)| .

d) We use (5.10) from part b and proceed in analogy to part a. Then we obtain

‖ϕ (T ∗T ) T ∗‖ = sup
n

{∣∣ϕ (σ2
n

)∣∣σn}n = sup
λ∈[0,‖T ‖2]

(
|ϕ(λ)|

√
λ
)
.

5.10 Let {(σn, un, vn)}n be the singular system of T and assume that the singular values

are arranged in a monotonically decreasing order.

a) For ϑ = 1, the inequality is trivial. So, let ϑ < 1. With the Hölder inequality for

p := ϑ−1 and q := (1− ϑ)−1 (⇒ p−1 + q−1 = ϑ+ (1− ϑ) = 1), we obtain

‖x‖2ϑν+(1−ϑ)µ =
∑
n

σ−2[ϑν+(1−ϑ)µ]
n |〈x, un〉X |2

=
∑
n

(
σ−2ν
n |〈x, un〉X |2

)ϑ (
σ−2µ
n |〈x, un〉X |2

)1−ϑ

≤
(∑

n

σ−2ν
n |〈x, un〉X |2

)ϑ(∑
n

σ−2µ
n |〈x, un〉X |2

)1−ϑ

= ‖x‖2ϑν ‖x‖2(1−ϑ)
µ .

b) We use Exercise 5.9 to obtain (by utilizing σn/σ1 ∈ ]0, 1] and ν ≥ µ)

‖x‖2µ =
∑
n

σ−2µ
n |〈x, un〉X |2

= σ−2µ
1

∑
n

(
σn
σ1

)−2µ

|〈x, un〉X |2

≤ σ−2µ
1

∑
n

(
σn
σ1

)−2ν

|〈x, un〉X |2

= σ
2(ν−µ)
1

∑
n

σ−2ν
n |〈x, un〉X |2

= ‖T ‖2(ν−µ)‖x‖2ν .
5.11 We have

f1 − f2 ∈ Xν ,
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‖T (f1 − f2)‖Y ≤ ‖T f1 − g‖Y + ‖g − T f2‖Y ≤ 2ε ,

‖f1 − f2‖ν ≤ ‖f1‖ν + ‖f2‖ν ≤ 2 max {‖f1‖ν , ‖f2‖ν} .
Hence, with the corresponding theorem on the best-possible worst-case error, we

obtain

‖f1 − f2‖X ≤ eν (2ε, 2 max {‖f1‖ν , ‖f2‖ν}) .
5.12 As usual, the singular system of T is denoted by {(σn, un, vn)}n. Let f+ ∈ Xµ with

‖f+‖µ ≤ %, that is there exists w ∈ X such that f+ = |T |µw and ‖f+‖µ = ‖w‖X ≤ %.

Moreover, let g := T f+. By using propositions which we had before in the book as

well as part c of Exercise 5.9, we obtain∥∥f+ −Rtg
∥∥
X =

∥∥∥∥∥∑
n

(
σ−1
n − Ft

(
σ2
n

)
σn
)
〈g, vn〉Yun

∥∥∥∥∥
X

=

∥∥∥∥∥∑
n

(
1− σ2

nFt
(
σ2
n

))
σ−1
n 〈g, vn〉Yun

∥∥∥∥∥
X

=

∥∥∥∥∥∑
n

pt
(
σ2
n

) 〈
f+, un

〉
Xun

∥∥∥∥∥
X

=

∥∥∥∥∥∑
n

pt
(
σ2
n

)
σµn〈w, un〉Xun

∥∥∥∥∥
X

=
∥∥∥pt (T ∗T ) (T ∗T )µ/2w

∥∥∥
X

≤ sup
σ∈[0,‖T ‖2L]

(
|pt(σ)|σµ/2

)
‖w‖X

≤ ωµ(t) % (5.11)

for all t ∈ ]0, t0]. Let now gε ∈ Bε(g). Then, with (5.11) and derivations from earlier

in the book, we see that there exist constants C3, C4 ∈ R+ such that, for sufficiently

small ε (guaranteeing that γ(ε) ≤ t0),∥∥f+ −Rγ(ε)g
ε
∥∥
X ≤

∥∥f+ −Rγ(ε)g
∥∥
X +

∥∥Rγ(ε)g −Rγ(ε)g
ε
∥∥
X

≤ ωµ(γ(ε)) %+ ε
√
CFM(γ(ε))

≤ C3 γ(ε)µ/2%+ ε
√
CFC4 γ(ε)−1/2

≤ C3

[
C2

(
ε

%

)2/(µ+1)
]µ/2

%+ ε
√
CFC4

[
C1

(
ε

%

)2/(µ+1)
]−1/2

= C3C
µ/2
2 εµ/(µ+1)%−µ/(µ+1)+1 + ε

√
CFC4C

−1/2
1 %1/(µ+1)ε−1/(µ+1)

= C̃%1/(µ+1)εµ/(µ+1) ,

where CF := supσ∈[0,‖T ‖2L](σ|Ft(σ)|) and C̃ := C3C
µ/2
2 +

√
CFC4C

−1/2
1 .
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The Magnetic Field

Exercises

6.1 f is curl-free and defined on the whole R3 and is, therefore, a gradient field. It is easy

to see that f(x) = grad (|x|2/2) = grad (|x|2/2) + curl 0.

g is divergence-free on the whole R3. Therefore, g is a curl field, that is g =

grad 0 + curlA. For finding the corresponding vector potential A, we observe that

g = curlA is equivalent to the system

∂

∂x2
A3 −

∂

∂x3
A2 = x2 ,

∂

∂x3
A1 −

∂

∂x1
A3 = x3 ,

∂

∂x1
A2 −

∂

∂x2
A1 = x1 .

A closer look reveals that

A(x) =
1

2


x2

3

x2
1

x2
2


is one possible solution.

Note that the Helmholtz decomposition is not unique.

6.2 For f(rξ) := εϕ(ϕ), r ∈ ]α, β[, ξ ∈ Ω, we obtain

∇ · f(rξ) =
1

r

(
εϕ

1√
1− t2

∂

∂ϕ
+ εt

√
1− t2 ∂

∂t

)
·

− sinϕ

cosϕ

0


=

1

r
√

1− t2
εϕ ·

− cosϕ

− sinϕ

0


= 0 .

Hence, f is divergence-free. Moreover, for each % ∈ ]α, β[, we get∫
S%(0)

f(x) · x|x| dω(x) =

∫
S%(0)

εϕ · εr dω = 0 .

Consequently, f is solenoidal due to one of the criteria which are listed in the book.
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Since f is obviously also tangential (to each S%(0)), it must also be toroidal (due to

another criterion in the book). Since only the zero function is toroidal and poloidal,

f can, therefore, not be poloidal.

The Mie representation of the toroidal function f is, thus,

f(x) = ∇× (x×∇0) + x×∇Q(x) .

With sufficient experience, one can guess a toroidal scalar Q here. If one does not

succeed with that, it is also possible to make some conclusions on requirements on Q

for finally obtaining a possible Q.

With the known properties of the local orthonormal basis and the cross product,

we deduce that

1 = εϕ · εϕ = (x×∇Q) · εϕ = ((rεr)×∇Q) · εϕ = (εϕ × (rεr)) · (∇Q)

= −rεt · (∇Q)

and

0 = εϕ · εt = (x×∇Q) · εt = ((rεr)×∇Q) · εt =
(
εt × (rεr)

)
· (∇Q)

= rεϕ · (∇Q) .

It would not be helpful to use 0 = εϕ · εr as well, because εr is anyway orthogonal to

the cross product x×∇Q. We obtain now

∇Q(x) = −1

r
εt + Fεr

for an unknown F . Since gradient fields are curl-free, we also get

0 = ∇× (∇Q)

=
1

r

(
εϕ

1√
1− t2

∂

∂ϕ
+ εt

√
1− t2 ∂

∂t

)
×
(
−1

r
εt + Fεr

)
+ εr ×

(
1

r2
εt
)

+ εr ×
(
∂F

∂r
εr
)

=
−1

r2
√

1− t2
εϕ × (−tεϕ) +

F

r
√

1− t2
εϕ ×

(√
1− t2 εϕ

)
−
√

1− t2
r2

εt ×
( −1√

1− t2
εr
)

+ F

√
1− t2
r

εt ×
(

1√
1− t2

εt
)

+
1

r

(
1√

1− t2
∂F

∂ϕ
εϕ × εr +

√
1− t2 ∂F

∂t
εt × εr

)
− 1

r2
εϕ

=
1

r2
εϕ +

1

r

(
− 1√

1− t2
∂F

∂ϕ
εt +

√
1− t2 ∂F

∂t
εϕ
)
− 1

r2
εϕ .

This is only possible if

∂F

∂ϕ
= 0 and

∂F

∂t
= 0 .

Since merely radially dependent summands are irrelevant for toroidal scalars, we try

∇Q(rξ) = −r−1εt, that is[
εr

∂

∂r
+

1

r

(
εϕ

1√
1− t2

∂

∂ϕ
+ εt

√
1− t2 ∂

∂t

)]
Q = −1

r
εt .
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Hence, ∂Q
∂r = 0 = ∂Q

∂ϕ and we need

1

r

√
1− t2 ∂Q

∂t
= −1

r
.

This leads us to
∂Q

∂t
= − 1√

1− t2
.

Therefore, one possible choice as a toroidal scalar of f is

Q(x) = − arcsin t = − arcsin ξ3 = − arcsin
x3

|x| .

Note that arccos y = π/2 − arcsin y such that Q(x) = arccos(x3/|x|) is another

possibility.

6.3 The divergence of f := εt is given by

∇ · f =
1

r

(
εϕ

1√
1− t2

∂

∂ϕ
+ εt

√
1− t2 ∂

∂t

)
· εt

=
1

r
√

1− t2
εϕ · (−tεϕ) +

√
1− t2
r

εt ·
(
− 1√

1− t2
εr
)

= − t

r
√

1− t .

Since this vector field is not divergence-free, εt is neither solenoidal, nor poloidal, nor

toroidal.

For f := εr, we obtain

∇ · f = ∇ ·
(
x

|x|

)
=

3∑
j=1

1 · |x| − xj 1
2|x|2xj

|x|2 =
3

|x| −
|x|2
|x|3 =

2

|x| .

Thus, εr is also neither solenoidal, nor poloidal, nor toroidal.

6.4 For the normal basis vector field, it is clear that

εr = ξ · 1 +∇∗0 + L∗0 .

For the tangential basis vector fields, we remember that εt = εr × εϕ and εϕ = εr ×
(−εt). For this reason, we try the ansatz εt = ∇∗G, because this would automatically

yield εϕ = L∗(−G) (actually, εϕ = ∇∗G would not work, because we know from

Exercise 6.2 that 0 = ∇∗ · εϕ such that we would get 0 = ∆∗G, which is only true for

constant G, which, however, yield ∇∗G = 0).

If εt = ∇∗G, then we need

εt =

(
εϕ

1√
1− t2

∂

∂ϕ
+ εt

√
1− t2 ∂

∂t

)
G .

This motivates the ansatz ∂G
∂ϕ = 0 and√

1− t2 ∂G
∂t

= 1 .

The latter equation leads us to

∂G

∂t
=

1√
1− t2

,
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which is solved, for example, by G(ξ(ϕ, t)) = arcsin t = arcsin ξ3. Hence,

εt = ξ · 0 +∇∗ arcsin
x3

|x| + L∗0

and

εϕ = ξ · 0 +∇∗0 + L∗
(
− arcsin

x3

|x|

)
.

Note that arccos y = π/2 − arcsin y such that arcsin may, for instance, be replaced

by − arccos above (since constant summands are irrelevant).

6.5 The solution basically requires the rules for the use of the Levi–Cività alternating

symbol as well as Schwarz’s theorem (all summations are over 1, 2, 3):

curl curl LP =

∑
j,k

εijk
∂

∂xj
(curl LP )k


i=1,2,3

=

 ∑
j,k,l,m

εijkεklm
∂

∂xj

[
∂

∂xl
(LP )m

]
i=1,2,3

=

 ∑
j,k,l,m,n,p

εkijεklmεmnp
∂

∂xj

[
∂

∂xl

(
xn

∂P

∂xp

)]
i=1,2,3

=

 ∑
j,l,m,n,p

(δilδjm − δimδjl) εmnp
∂

∂xj

[
δln

∂P

∂xp
+ xn

∂2P

∂xl∂xp

]
i=1,2,3

=

 ∑
j,l,m,n,p

(δilδjm − δimδjl) εmnp

×
[
δln

∂2P

∂xj∂xp
+ δjn

∂2P

∂xl∂xp
+ xn

∂3P

∂xj∂xl∂xp

]
i=1,2,3

=

∑
j,p

(
εjip

∂2P

∂xj∂xp
+ εjjp︸︷︷︸

=0

∂2P

∂xi∂xp

)
︸ ︷︷ ︸

−(∇×∇P )i=0

+
∑
j,n,p

εjnpxn
∂3P

∂xj∂xi∂xp


i=1,2,3

−

∑
j,p

(
εijp

∂2P

∂xj∂xp
+ εijp

∂2P

∂xj∂xp

)
︸ ︷︷ ︸

=2(∇×∇P )i=0

+
∑
j,n,p

εinpxn
∂3P

∂x2
j∂xp


i=1,2,3

=

∑
j

∑
n,p

εjnpxn
∂

∂xp︸ ︷︷ ︸
=Lj

∂

∂xj

∂P

∂xi


i=1,2,3︸ ︷︷ ︸

=L·∇(∇P )=L∗·(ξ ∂
∂r

+ 1
r
∇∗)∇P=0

−

∑
n,p

εinpxn
∂

∂xp

∑
j

∂2P

∂x2
j


i=1,2,3︸ ︷︷ ︸

=x×∇(∆P )

.
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Hence, since toroidal fields are divergence-free, we obtain

∆LP = grad div LP − curl curl LP = −curl curl LP = L∆P .

Alternatively and a bit shorter, one can also proceed as follows:

∆LP =
∑
j

∂2

∂x2
j

(x×∇P )

=

∑
j

∂2

∂x2
j

∑
k,l

εiklxk
∂P

∂xl


i=1,2,3

=

∑
j,k,l

εikl

(
2δjk

∂2P

∂xj∂xl
+ xk

∂3P

∂x2
j∂xl

)
i=1,2,3

=

2
∑
k,l

εikl
∂2P

∂xk∂xl
+
∑
j,k,l

εiklxk
∂3P

∂xl∂x
2
j


i=1,2,3

= 2∇×∇P︸ ︷︷ ︸
=0

+

∑
k,l

εiklxk
∂

∂xl

∑
j

∂2P

∂x2
j


i=1,2,3

= x×∇∆P

= L∆P .
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Mathematical Models in Seismology

Exercises

7.1 While we have

φ(X, 0) =

X1

X2

X3

 = X ,

B1(0) is a simple body, and φ is obviously twice continuously differentiable, we ob-
serve, however, that the deformation gradient is

F (X, t)

=

−2X1te
−(X2

1+X2
2)tX1 + e−(X2

1+X2
2)t −2X2te

−(X2
1+X2

2)tX1 0

−2X1te
−(X2

1+X2
2)tX2 −2X2te

−(X2
1+X2

2)tX2 + e−(X2
1+X2

2)t 0

−2X1te
−(X2

1+X2
2)t(t+ 1)X3 −2X2te

−(X2
1+X2

2)t(t+ 1)X3 e−(X2
1+X2

2)t(t+ 1)



such that the Jacobian

J(X, t) = e−(X2
1+X2

2)t(t+ 1)
(

4X2
1X

2
2 t

2e−2(X2
1+X2

2)t − 2X2
1 te
−2(X2

1+X2
2)t

− 2X2
2 te
−2(X2

1+X2
2)t + e−2(X2

1+X2
2)t

−4X2
1X

2
2 t

2e−2(X2
1+X2

2)t
)

= e−3(X2
1+X2

2)t(t+ 1)
[
4X2

1X
2
2 t

2 − 2
(
X2

1 +X2
2

)
t+ 1− 4X2

1X
2
2 t

2
]

= e−3(X2
1+X2

2)t(t+ 1)
[
1− 2

(
X2

1 +X2
2

)
t
]

vanishes for all X with X2
1 +X2

2 = (2t)−1. Hence, the general assumption on motions

is violated.

The material velocity and acceleration are determined as follows:

V (X, t) =

 −
(
X2

1 +X2
2

)
e−(X2

1+X2
2)tX1

−
(
X2

1 +X2
2

)
e−(X2

1+X2
2)tX2

−
(
X2

1 +X2
2

)
e−(X2

1+X2
2)t(t+ 1)X3 + e−(X2

1+X2
2)tX3


= e−(X2

1+X2
2)t

− (X2
1 +X2

2

) X1

X2

(t+ 1)X3

+

 0

0

X3


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and

A(X, t) = −
(
X2

1 +X2
2

)
e−(X2

1+X2
2)t

− (X2
1 +X2

2

) X1

X2

(t+ 1)X3

+

 0

0

X3


− e−(X2

1+X2
2)t (X2

1 +X2
2

) 0

0

X3


= e−(X2

1+X2
2)t

(X2
1 +X2

2

)2 X1

X2

(t+ 1)X3

− 2
(
X2

1 +X2
2

) 0

0

X3

 .
7.2 According to the Laplace expansion of a determinant, we have

detA =

n∑
k=1

ajk detAj,k (−1)j+k (7.1)

for all j = 1, . . . , n. Note that each aj,k does not occur in Aj,k. Moreover, with the

chain rule, we get

d

dt
(detA) =

n∑
j,k=1

∂ detA

∂aj,k

daj,k
dt

. (7.2)

By combining (7.1) with (7.2), we obtain

d

dt
(detA) =

n∑
j,k=1

detAj,k (−1)j+k
daj,k

dt
,

which completes the proof.

7.3 It is clear that, if F ≡ G, then the integrals of F and G must coincide on every

arbitrary domain.

Let now
∫
U F (Y ) dY =

∫
U G(Y ) dY for every nice region U ⊂ B. Moreover, let

X ∈ B be an arbitrary point. We assume that F (X) 6= G(X). Without loss of

generality, let F (X)−G(X) > 0. Since F and G are continuous and B is open, there

exists a ball Br(X) ⊂ B such that F −G > 0 on Br(X). Obviously, Br(X) is a nice

region. Hence,

0 =

∫
Br(X)

F (Y ) dY −
∫
Br(X)

G(Y ) dY =

∫
Br(X)

F (Y )−G(Y ) dY ,

which contradicts the positivity of F −G on this ball. Since X was arbitrary, we have

F ≡ G on B.

7.4 Clearly, φ0(X) = X for all X ∈ B1(0), the ball B1(0) is a simple body, and φ is twice

continuously differentiable. Moreover, the equation

φt(X) =

 X1(1 + t)

X2

(
1 + t2

)
X3(1 + 2t)

 =

x1

x2

x3


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is easily solvable for each t ∈ R+
0 :

X1

X2

X3

 = φ−1
t (x) =


1

1+t x1

1
1+t2

x2

1
1+2t x3

 , (7.3)

which means that φt is invertible. The image φt(B1(0)) is given by all x ∈ R3 for

which

|x1| < 1 + t

and

|x2| <
√

1−
(

x1

1 + t

)2 (
1 + t2

)
and

|x3| <
√

1−
(

x1

1 + t

)2

−
(

x2

1 + t2

)2

(1 + 2t)

and is, therefore, an open set (more precisely, an open ellipsoid). Hence, φ is a C(2)-

regular motion. Eventually, we obtain the deformation gradient

F (X, t) =

1 + t 0 0

0 1 + t2 0

0 0 1 + 2t


with its determinant

J(X, t) = (1 + t)
(
1 + t2

)
(1 + 2t) > 0 for all t ≥ 0 . (7.4)

Hence, the general assumptions on a motion are satisfied.

Regarding the equation which has to be validated, we calculate

∂J

∂t
(X, t) = 1 ·

(
1 + t2

)
(1 + 2t) + (1 + t)2t(1 + 2t) + (1 + t)

(
1 + t2

)
2 (7.5)

and

V (X, t) =

 X1

2tX2

2X3

 . (7.6)

We use (7.3) to transfer (7.6) into spatial coordinates which leads us to the spatial

velocity

v(x, t) =


1

1+t x1

2t
1+t2

x2

2
1+2t x3

 .

Hence,

divx v(x, t) =
1

1 + t
+

2t

1 + t2
+

2

1 + 2t
. (7.7)
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By combining (7.4), (7.7), and (7.5), we finally get

(divx v (φt(X), t)) J(X, t) =
(
1 + t2

)
(1 + 2t) + (1 + t)2t(1 + 2t) + 2(1 + t)

(
1 + t2

)
=
∂J

∂t
(X, t) .

7.5 Since φ is a C(2)-function, we can apply Schwarz’s theorem such that we get, due to

the chain rule, the identity

∂

∂t
F (X, t) =

∂

∂t

∂

∂X
φ(X, t) =

∂

∂X

∂

∂t
φ(X, t) =

∂

∂X
V (X, t)

=
∂

∂X
V
(
φ−1
t (φt(X)) , t

)
=

∂

∂X
v (φt(X), t)

=
∂

∂x
v (φt(X), t) · ∂φt(X)

∂X

=
∂

∂x
v (φt(X), t) · F (X, t) .

7.6 The requirement on a perfect fluid means that every non-trivial vector is an eigenvec-

tor of the Cauchy stress tensor σ. In particular, there exist scalars λ1, λ2, λ3 ∈ R such

that σεj = λjε
j for all j = 1, 2, 3, where εj is the usual j-th standard orthonormal

vector. Since σεj yields the j-th column of σ, we see already here that

σ =

λ1 0 0

0 λ2 0

0 0 λ3

 .

However, the vector (1, 1, 1)T is also an eigenvector, that is there is λ4 ∈ R such that

σ

1

1

1

 =

λ4

λ4

λ4

 , while σ

1

1

1

 =

λ1

λ2

λ3

 .

Hence, there is λ(= λj ∀j) such that

σ =

λ 0 0

0 λ 0

0 0 λ

 .

We set p := −λ.

For the divergence of σ, we calculate (with I representing the identity tensor)

divx σ = divx (−pI) = −divx


p 0 0

0 p 0

0 0 p

 = −


divx (p, 0, 0)

divx (0, p, 0)

divx (0, 0, p)

 = −


∂p
∂x1
∂p
∂x2
∂p
∂x3


= −∇xp .

7.7 For verifying that R(U) = (1/2)(curlXU) × I, we calculate the right-hand side as

follows (a single index attached to a tensor refers to its corresponding row):

(curlXU)× I =

 3∑
n,m=1

εlnm(curlU)nIm


l=1,2,3
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=

 3∑
n,m=1

εlnm

 3∑
j,k=1

εnjk
∂Uk
∂Xj

 Im


l=1,2,3

=

 3∑
n,m,j,k=1

εlnmεnjk
∂Uk
∂Xj

Im


l=1,2,3

=

 3∑
n,m,j,k=1

(−εnlmεnjk)
∂Uk
∂Xj

Im


l=1,2,3

= −

 3∑
m,j,k=1

(δljδmk − δlkδjm)
∂Uk
∂Xj

Im


l=1,2,3

= −

 3∑
k=1

∂Uk
∂Xl

Ik −
3∑
j=1

∂Ul
∂Xj

Ij


l=1,2,3

= −
(

3∑
k=1

∂Uk
∂Xl

Ik

)
l=1,2,3

+

 3∑
j=1

∂Ul
∂Xj

Ij


l=1,2,3

= −


∂U1
∂X1

∂U2
∂X1

∂U3
∂X1

∂U1
∂X2

∂U2
∂X2

∂U3
∂X2

∂U1
∂X3

∂U2
∂X3

∂U3
∂X3

+


∂U1
∂X1

∂U1
∂X2

∂U1
∂X3

∂U2
∂X1

∂U2
∂X2

∂U2
∂X3

∂U3
∂X1

∂U3
∂X2

∂U3
∂X3


= − (∇XU)T +∇XU .

Moreover, in the context of the linearization, we wrote (actually, without any loss of

accuracy) F = I +∇XU . Hence,

F = I +∇XU = I +
1

2

(
∇XU + (∇XU)T

)
+

1

2

(
∇XU − (∇XU)T

)
= I + E +R .

7.8 We have S ' 2Ξ : E due to Hooke’s law. With the formula for an isotropic Ξ, we get

Sij ' 2
3∑

k,l=1

[λδijδkl + µ (δikδjl + δilδjk)] Ekl

= 2λδij

3∑
k=1

Ekk + 2µ (Eij + Eji)

= λδij

3∑
k=1

(
∂Uk
∂Xk

+
∂Uk
∂Xk

)
+ µ

(
∂Ui
∂Xj

+
∂Uj
∂Xi

+
∂Uj
∂Xi

+
∂Ui
∂Xj

)
= 2λδij divX U + 2µ

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
such that

S ' 2λ divX U I + 4µE (7.8)
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and

trS =
3∑
j=1

Sjj ' 6λ divX U + 2µ
3∑
j=1

(
∂Uj
∂Xj

+
∂Uj
∂Xj

)
= (6λ+ 4µ) divX U .

Moreover, with (7.8), we also obtain

E ' 1

4µ
(S − 2λ divX U I) =

1

4µ

(
S − λ

3λ+ 2µ
trS I

)
.

7.9 We have from Exercise 7.8 the identity

E ' 1

4µ

(
S − λ

3λ+ 2µ
trS I

)
=

1

4µ

(
S11ε

1 ⊗ ε1 − λ

3λ+ 2µ
S11 I

)
.

Hence, Eij = 0 whenever i 6= j. Moreover,

E11 ' S11
1

4µ

(
1− λ

3λ+ 2µ

)
= S11

λ+ µ

2µ(3λ+ 2µ)

and

E22 = E33 ' −S11
λ

4µ(3λ+ 2µ)
.

Therefore, Young’s modulus is given by

S11

E11
' 2µ

λ+ µ
(3λ+ 2µ)

and Poisson’s ratio is

−E22

E11
= −E33

E11
' λ

4µ(3λ+ 2µ)

2µ(3λ+ 2µ)

λ+ µ
=

1

2

λ

λ+ µ
.

7.10 With the assumption of isotropy, we get

σ = Γ : (∇xu) = λ(divx u)I + µ
[
∇xu+ (∇xu)T

]
.

We have already seen that the ansatz u(x, t) = αϕ(x · k − ct) for a plane progressive

wave leads us to

∂ui
∂xj

= αikjϕ
′(x · k − ct)

such that

divx u = α · kϕ′(x · k − ct)
and

∇xu+ (∇xu)T = ϕ′(x · k − ct)(α⊗ k + k ⊗ α) .

Hence, we get the stress tensor

σ(x, t) = ϕ′(x · k − ct) [λα · k I + µ (α⊗ k + k ⊗ α)] .

For P-waves, where α ‖ k, we see that this turns out to be

σP(x, t) = ϕ′(x · k − ct) (λα · k I + 2µα⊗ k) ,
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while we obtain for S-waves, which correspond to α⊥ k, the stress tensor

σS(x, t) = ϕ′(x · k − ct)µ (α⊗ k + k ⊗ α) .

7.11 From Exercise 3.17, we have the following representation for the Laplace operator in

2D-polar coordinates:

∆U =
∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2

∂2U

∂ϕ2
.

Hence, the separation ansatz U(x) = F (r)G(ϕ) for the Helmholtz equation ∆U +

ω2U = 0 leads us to

F ′′(r)G(ϕ) +
1

r
F ′(r)G(ϕ) +

1

r2
F (r)G′′(ϕ) + ω2F (r)G(ϕ) = 0 . (7.9)

Dividing (7.9) by FG outside the zeros and multiplying with r2, we arrive at(
F ′′(r) +

1

r
F ′(r) + ω2F (r)

)
r2

F (r)
= −G

′′(ϕ)

G(ϕ)
. (7.10)

Since we completely separated here the dependencies on the two polar coordinates,

both sides of (7.10) need to be constant, that is there is a constant C ∈ R such that

r2F ′′(r) + rF ′(r) + ω2r2F (r) = CF (r) , (7.11)

G′′(ϕ) = −CG(ϕ) . (7.12)

Due to the nature of the polar coordinates, we need G(0) = G(2π) and G′(0) =

G′(2π). Note that such identities for higher-order derivatives are then implied by

(7.12). We distinguish three cases:

C < 0: Then the general solution of (7.12) is

G(ϕ) = C1 exp
(
−
√
−C ϕ

)
+ C2 exp

(√
−C ϕ

)
.

However, the 2π-periodicity requirement can only be fulfilled by this solution

if C1 = C2, which can easily be seen by solving the corresponding 2×2 system

of linear equations.

C = 0: Then the general solution of (7.12) is

G(ϕ) = C3 + C4ϕ .

Obviously, the 2π-periodicity is given if and only if C4 = 0.

C > 0: The general solution of (7.12) is now

G(ϕ) = C5 sin
(√

C ϕ
)

+ C6 cos
(√

C ϕ
)
.

The 2π-periodicity requirement leads us to

C6 = C5 sin
(

2π
√
C
)

+ C6 cos
(

2π
√
C
)
,

C5

√
C = C5

√
C cos

(
2π
√
C
)
− C6

√
C sin

(
2π
√
C
)
.

This system of linear equations, namely

0 = C5 sin
(

2π
√
C
)

+ C6

[
cos
(

2π
√
C
)
− 1
]
,

0 = C5

[
cos
(

2π
√
C
)
− 1
]
− C6 sin

(
2π
√
C
)
,
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is non-trivially solvable if and only if it has a vanishing determinant, that is

− sin2
(

2π
√
C
)
−
[
cos
(

2π
√
C
)
− 1
]2

= 0 . (7.13)

Equation (7.13) is equivalent to

cos
(

2π
√
C
)

= 1 .

As a consequence, we get non-trivial solutions if and only if
√
C ∈ N.

Therefore, the general solution of (7.12) with 2π-periodicity is representable as

G(ϕ) =
∞∑
k=0

(Ak sin(kϕ) +Bk cos(kϕ)) , ϕ ∈ [0, 2π] .

Note that k = 0 corresponds to the case C = 0 and A0 := 0.

With the knowledge that C = k2, k ∈ N0, we can write (7.11) as

r2F ′′(r) + rF ′(r) +
(
ω2r2 − k2

)
F (r) = 0 .

We substitute now % := ωr and F̃ (%) := F (r) and obtain

%2F̃ ′′(%) + %F̃ ′(%) +
(
%2 − k2

)
F̃ (%) = 0 . (7.14)

Hence, we see that every multiple of the Bessel function Jk solves (7.14) and, since

the solution needs to exist for % = 0, these are the only solutions. Consequently, all

solutions of the Helmholtz equation on the 2D-disc are given by

U(x(r, ϕ)) =

∞∑
k=0

Jk(ωr) (Ak sin(kϕ) +Bk cos(kϕ)) .

7.12 We have already seen that F̂n,j solves

F̂ ′′n,j(r) +
2

r
F̂ ′n,j(r) +

(
ω2

c2
− n(n+ 1)

r2

)
F̂n,j(r) = 0

(with a finite limit r → 0+) if and only if F̂n,j(r) = Cj̃n(ωc−1r) for an arbitrary

constant C. Hence, we have

c2

ω2
F̂ ′′n,j(r) +

c

ω

2

r

c

ω
F̂ ′n,j(r) +

(
1− n(n+ 1)

r2

c2

ω2

)
F̂n,j(r) = 0 ,

which is equivalent to

j̃′′n(x) +
2

x
j̃′n(x) +

(
1− n(n+ 1)

x2

)
j̃n(x) = 0 . (7.15)

Let now G(x) := (sinx)/x. Then we have

G′(x) =
cosx

x
− sinx

x2
,

G′′(x) = −sinx

x
− 2

cosx

x2
+ 2

sinx

x3
.

Hence, we obtain

G′′(x) +
2

x
G′(x) = −sinx

x
− 2

cosx

x2
+ 2

sinx

x3
+ 2

cosx

x2
− 2

sinx

x3
= −sinx

x
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= −
(

1− 0(0 + 1)

x2

)
G(x) .

Hence, G solves (7.15) for n = 0.

Now let H(x) := x−1(x−1 sinx− cosx). Then we obtain

H ′(x) = − 1

x2
(G(x)− cosx) +

1

x

(
G′(x) + sinx

)
and

H ′′(x) = 2
1

x3
(G(x)− cosx)− 2

1

x2

(
G′(x) + sinx

)
+

1

x

(
G′′(x) + cosx

)
such that

H ′′(x) +
2

x
H ′(x) =

1

x

(
G′′(x) + cosx

)
=

1

x2

(
− sinx− 2

cosx

x
+ 2

sinx

x2

)
+

1

x
cosx

= −
[

sinx

x2
− cosx

x
− 2

x2

(
sinx

x2
− cosx

x

)]
= −

(
1− 1(1 + 1)

x2

)
H(x) .

7.13 For n = 1, the toroidal frequency equation χj̃n+1(χ) = (n − 1)j̃n(χ) becomes the

equation

χj̃2(χ) = 0 . (7.16)

With the formula for j̃2, this yields(
3

χ2
− 1

)
sinχ− 3

χ
cosχ = 0 . (7.17)

If cosχ 6= 0, then (7.17) is equivalent to

tanχ =

3
χ

3
χ2 − 1

,

which can also be written as
tanχ

χ
=

3

3− χ2
, (7.18)

because χ 6= 0 is clear.

In the remaining case of a positive root χ = (2k + 1)π/2, k ∈ N0, of the cosine

function, the spherical Bessel function would take the value

j̃2

(
2k + 1

2
π

)
=

(
3 · 4

(2k + 1)2π2
− 1

)
(−1)k

2k+1
2 π

− 0

=

(
12

(2k + 1)2π2︸ ︷︷ ︸
/∈Q

−1

)
︸ ︷︷ ︸

6=0

(−1)k
2

(2k + 1)π︸ ︷︷ ︸
6=0

6= 0 .
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Hence, roots of the cosine function do not solve the frequency equation (7.16) and,

therefore, all solutions must fulfil (7.18).

For solving Equation (7.18) numerically, we write the equation equivalently as

tanχ =
3χ

3− χ2
.

0 1 2 3 4 5 6 7 8 9 10
−20

−15

−10

−5

0

5

10

15

20
tanχ

3χ/(3− χ2)

x =
√
3

Figure 7.1 The crossing points of the coloured graphs are solutions of the frequency equa-
tion for n = 2. Note the singularity of the rational term at

√
3, which makes clear that

there is no missed crossing point in this area.

Figure 7.1 shows that the smallest positive solution can be expected at approxi-

mately χ ≈ 6. We, therefore, start a Newton iteration for

f(χ) := tanχ− 3χ

3− χ2
⇒ f ′(χ) =

1

cos2 χ
− 9 + 3χ2

(3− χ2)2 .

With χ0 := 6, the iteration

χk+1 := χk −
f (χk)

f ′ (χk)

converges to χ = 5.76345919689455 . . .

7.14 We already know that

d

ds
(Sp) (X(s)) = ∇xS(X(s)) .

In the case of a constant velocity field, the right-hand side must vanish. Hence, with



44 Mathematical Models in Seismology

the definition of the unit slowness vector p, we get

d

ds
(∇xT (X(s))) = 0 .

In other words, ∇xT is constant along each ray. However, by definition of the rays,

d

ds
X(s) =

∇xT (X(s))

|∇xT (X(s))|
is the unit tangential vector along the ray s 7→ X(s). Therefore, this (arbitrarily

chosen) ray must be a straight line.
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Final comment

Note that the references of the book are also valid as a bibliography regarding exercises.

In particular, some of the problems solved in these exercises here can certainly also be

found together with derivations in other literature such as those publications which are

listed in the references of the book.


