Solutions to: Geomathematics

Modelling and Solving Mathematical Problems in Geodesy and Geophysics

Volker Michel

University of Siegen, Germany






Contents

Gravitation and Harmonic Functions
Exercises

Basis Functions
Exercises

Inverse Problems
Exercises

The Magnetic Field
Exercises

Mathematical Models in Seismology
Exercises

Final comment

page 1

14
14

20
20

29
29

34
34

45






3

Gravitation and Harmonic Functions

Exercises
3.1 In this exercise, the harmonicity of the fundamental solutions

1

’)/n((L'):W, wGRn\{O}, 1fn23,

and
(@)= —logle|,  zeR2\{0}, ifn=2,

is to be proved. For n > 3, we obtain

" (—n+2)/2
1 2
’Yn(x) = n—?2 Z wj ’
7=1
o, 1 —n+2 [ o - o
n _ - 2 _ 2
8xk(x)_n—2 5 ij 2z, = — Zacj Tk,
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o n (—n—2)/2 n —n/2
Tn _ n 2 2 2
7@ == (-3) | 2 2t - | 24
j=1 j=1

Hence, the Laplace operator yields

Azyn(z) = 3 5 (x) = n|z| "2 Zm% —nlz|™" =0.
1 9Tk —
k=1 k=1
——
=|z|?
In the case n = 2, we obtain
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-2 ~1
92 =, 2 =,
T @ =2 w2
k j=1 j=1
such that
Apye(x) = 2|z|” 4ZZE —2|z|72=0.
w_/
=|z|?

3.2 The exercise is to show the harmonicity of

1
V(x ::/Fydy, reR", ifn>3,
A

V(x)::/F(y)log\x—y\dy, reR? ifn=2,
D

outside D, where D C R” is a bounded and open set and F: D — R is a bounded

and Lebesgue-integrable function.
Let # € R?\ D be arbitrary but fixed. Then there exists ¢ > 0 such that B.(x) C

R3\ D. In analogy to the solution of Exercise 3.1, we obtain, for n > 3,

—n/2
0 1 n
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while the case n = 2 leads us to
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with

|Veloglz —y|| < —,
|z — |
2

92,02, log |z —y|| < m .
Hence, there exist constants A,, and B, such that, for n > 2, a first-order deriva-
tive of the integrand of V with respect to x is bounded by A,e' "M and any
corresponding second-order derivative is bounded by B,e™" for all y € D, where
M = sup,cp |[F(y)|. Since D is bounded, the constant bounds are integrable in D
and, consequently, we can interchange first- and second-order differentiations with
the integral. In view of Exercise 3.1, we get that A,V (z) = 0.
A possible definition is:

U is regular at infinity (in R"), if |U(y)| = O(Jy|>*™™) and |[VU(y)| = O(|y|' ™) as
ly| = 0.
Obviously, y — |y|2~™ satisfies the first requirement. From the solution of Exercise
3.1, we see that V|y|>™™ = (2 —n)[y| "y and |[V|y[>"[ = (n = 2)|y['"™ = O(|y|"™™)
as |y| — oo.
The Kelvin transform is defined by F*(x) = |z|> "F(|z|2z), x € R* C R". The
proof of the formula for the application of the Laplace operator is basically analogous
to the proof in the case n = 3, which is in the book. We obtain

A F*(z) = (AglzP™) F (JP) +2(Vgl|zP ") - Vo F <’5‘2>

n T

According to Exercise 3.1, the first summand on the right-hand side vanishes and
Vi|z|>™™ = (2 — n)|z| 2. The calculation of V,F(|z|72x) is independent of the
dimension n (see the proof for n = 3). Hence, we obtain

2-n) T
2 (Vglz| )VxF<|x|2>
T 22 (Y, F
=4(n - )Wfﬂ‘( Y (y))’y:ﬁ— Wx'( y (y))|y:ﬁ
2(n—2
2 e (O,

||

for all x € R*. The formula for %F (Jz|~2x) is also entirely independent of the

dimension n such that we can take the already derived formula for n = 3 here as
well. A closer look at the sum over j = 1,2, 3 (also available in the book) reveals that,
for general n, only one term changes. We get (the 2n in the first line was originally
6 for n = 3)

T\ 8|x|2 — 2n|z|? 4
2k () = () e,

-
+ (o~ o~ ) £ Oy 9 VROl s, 0
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1
+ ‘.’17|4( Y (y)) y—‘mlz

Eventually, the combination of the derivations above leads us to

2(n —2) 2n—4

A F*(z) = Wx (VyF(y))ly:ﬁ - W € - (VyF(@/))‘y:ﬁ
1
+ [z[*2 (AyF(?J))’y:ﬁ

1 *
= e Ay FW)lye =, =€ R,

A function U € C®)(D), D C R, is harmonic, if and only if U”(z) = 0 for all z € D.
If D is a region, which means in R! that D is an open interval, then a harmonic
function U on D must have the form U(z) = ax + b for some constants a,b € R.
Gauf’s mean value theorem in R! can be postulated as follows: If U: [zg — R, zo +
R] — R is harmonic on |zg — R, z¢ + R[ and continuous on [zg — R, z¢ + R], then

1 zo+R

(U(zo— R) + U (z0+ R)) = — U(z) dz.

U(zo) = R ), g

N |

The analogy is given in the sense that [z¢g — R, z¢ + R] is a one-dimensional ball with
the measure 2R and its boundary is given by {xg — R, zo + R}, which has 2 elements.
The proof is easy. With the considerations above, we get

ro+R To+R a zo+R
/ U(x)dx—/ aw—i—bdx:(fxz—i-bx)
zo—R zo—R 2 zo—R
a 2 @ 2
zi(xo—l—R) _i(mO_R) +b(zo+ R) —b(xg— R)

- g4x0R + 2bR = 2R(azo + b) = 2RU (o)
and

%(U(xo*R)+U(xo+R)):%(a(xofR)+b+a(xo+R)+b):U(xo).

We use the fundamental theorem on the ball Br(xo), namely

1 oUu 0 1
4”U@@:iLMm>Qx—xaaua"L“)anMm—xa>d“@)

—/ AUE) 4, (3.1)
Br(zo) 1T — Tol

and Green’s second identity, that is

/ U(x) Aml—leU(x)dm:/ U) —2—1-1-2_ U(2) dw(a).
Br(zo) Sr(z0)

~— ov(x) ov(z)
=0 ——
=0

(3.2)
From (3.2), we obtain

1 1 1
/ “%wwmz‘/ BW@M@:/ AU(2) de.
Sgr(xo) ‘.%' —.’L‘o‘ ov R Sgr(xo) ov R Br(zo)
(3.3)
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Furthermore, by using

v(z) = x;2$07 x € Sg(xo),
and
1 _ x—xg
N |z — 203’
we get
o 1 x—1x9 —(T—m0)
Ulx —— dw(x :/ Ux . dw(z
/sm) O o =2 = Jo VY TR e aop W)
2 ).
= —— U(z)dw(x). (3.4)
R? Jsp(z0)

Inserting (3.4) and (3.3) into (3.1), we obtain the desired result.
Due to the chain rule, we have
1

VIvv] = 2VV]

VIVV 2.

Hence,

1 0 (0 i
VIVV@) = g (axi > (37) >.:1 23

82
\vv (Z I . V(x>> e

(Ve VV(z) - (VV(z))

1
~|VV ()]
— (Ve VV(z))- n(z), (3.5)
where the dot in the latter and the penultimate line stands for a matrix-vector mul-
tiplication.

With the formula V*F = VF — (n - VF)n for the surface gradient, we can now
conclude that

VHVV|= (Ve VV)n+ (n' (Ve VV)n)n. (3.6)

Furthermore, we have, due to the product rule, the identity

¢'(s) = %WP(S)) = % <_m) 7

1 1 d
~ v (V) TV ~ o 2TV ),

The chain rule also yields

LIV (els)) = (V@ IV (p(3)) - ¢/(s), (3:8)
s —~—

=n
where the dot again represents the matrix-vector multiplication. Moreover, with (3.5),
we arrive at (the dot now represents the Euclidean inner product)

LTV ()] = VIV ()] ¢(s) = —n (VO TVInl . (39)
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Eventually, we combine (3.6), (3.7), (3.8), and (3.9) and we observe that

¢ (s) = {le| [(nT(V ® VV)TZ) n—(V® VV)TL] }

1
= (= v vV
(vw | )

For proving this, we need to assume that U € C?)(R). We start with the proof of
‘=>": for this purpose, we use the stronger version of Gauf}’s mean value theorem from
Exercise 3.6. Moreover, we observe that |z — x| < R for all € Br(zo) and, hence,
|z — 0|7t — R71 > 0. Let now AU > 0 on R and let the ball Bg(zo) be arbitrarily
chosen, with the mere requirement that Br(xg) C R. Then we obtain

©(s)

w(s)

1 1 1 1

1 /
U(x)dw(z).
Am R? Sr(zo) () dete)

Hence, since a smaller radius of the ball would work as well, we have

1
4702

<

U(zo) < /S ( )U(a:) dw(x) for all p €]0, R].

We easily deduce now that

R ) R 1 )
Uﬂ;ogdgg/ / U(z)dw(z) o“do.
/0 (o) 0 4m0% Js,(x0) () du(z)

Obviously, this leads us to

such that U is subharmonic.

For ‘=", we assume that U is subharmonic and Br(xg) C R is an arbitrary ball.

Then we consider the properties of a function V' € C(Bg(z¢)) which is harmonic
on Br(xo) and satisfies U <V on Sg(zg). Let W := U — V. We want to prove that
the latter inequality is maintained on Bg(xz¢). For this purpose, we assume that there
is y € Br(zo) with U(y) > V(y).

Since W is continuous and Bpr(zp) is compact, there exists z € Br(zp) such that
A=W(z)= max, g W (zx). Due to the assumption above, A must be positive.
However, since W is non-positive on Sg(zg), it cannot be constant. Therefore, there
exists x; € Br(zp) where W(x;) = A and each neighbourhood of z; contains points

x with W(z) < A. Thus, the subharmonicity of U and Gauf}’s mean value theorem
for V yield (provided that R is sufficiently small)

A= W(.Tl) == U(xl) - V(l‘l)
< 3 / U(z)dz — 3 / V(z)dz = 3 / W(z)dz
~ 4nR3 Br(z1) 4 R3 Br(z1) AT R Bp(z1)

<A, (3.10)
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where the latter inequality holds true due to our previous observation on W in neigh-
bourhoods of x; and the continuity of W. However, (3.10) includes the contradiction

A < A. Hence, our assumption is falsified and U < V on the whole set Br(zg).
In particular, if V' is the (unique) solution of the IDP
AV =0 on Bg(zp) and V =U on Sg(zg),
then the latter result implies that U(z) < V(x) for all = € Bg(z¢), while Gauf}’s
mean value theorem leads us to

U(xg)EQVXxO)::4ﬂE$ZJQ ( )VXm)dw(z)::4ﬂE{2j£ U@,

Consequently, the stronger version of Gauss’s mean value theorem (Exercise 3.6)
yields
1

dm Bo(

AU@)( ! 1>dx20

|z — 0] - 0
>0

for all ¢ €10, R]. If we had AU(z9) < 0, then there would exist ¢ > 0 with AU|p (.} <
0, which is a contradiction. Due to the arbitrariness of zq, the proof is finished.

z0)

The solution of part b is: U is subharmonic < U is convex.
We observe first that TF € C(E) for all FF € C(D) and T is linear due to basic
propositions from real analysis. Furthermore, the triangle inequality for integrals and
the continuity of the integral kernel K and of F' yield

KTFM@MS/ K(z,9)]  |F@)| dy < K@D Flopy  (3.11)
D N—\— N~
<IKllcexpy SIFlcmp)

for all x € E and all F' € C(D), where A is the usual Lebesgue measure. Hence, T is
bounded, because

ITFllc < 1KllcexpyMD)Fllopy  for all Fe C(D).

Let us now prove that 7 is compact. For this purpose, we consider the image of the
unit sphere & in C(D) and show that TU is relatively compact by using the Ascoli—
Arzela theorem. This means that we need to prove that TU is pointwise bounded
and equicontinuous.
From Equation (3.11), we get that [(TF)(z)| < [[K||c(gxpyMD) for all F' € U and
all x € E. Hence, TU is pointwise bounded (and, actually, also uniformly bounded).
Furthermore, the Cauchy—Schwarz inequality yields

2

(TF)(z) — (TF) («')|° = (3.12)

AJK@@%JWWWNF@Ny
< [ (k) - K ()" d [ (F)ay.

Let now € > 0 be arbitrary. Since £ x D is compact and K is continuous, the kernel
K is also uniformly continuous, that is we find a § > 0 such that the following

implication is valid (if A\(D) = 0, then 7 = 0 and the compactness is trivial):

’($,y)—(x”y/)‘<6 = ‘K($’y)—K(x/,y')’<ﬁ_
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In particular, we have the implication:
‘x — x/| <4,y € D arbitrary = ‘K(x,y) -K (x’,y)‘ < ﬁ
Consequently, if we have z, 2’ € E with |z — 2/| < §, then we get, due to (3.12), that

2

A(D)?

(TF) () — (TF) («')|* < A(D) —= 5 1Pl o (3.13)

Moreover, each F' € U satisfies

1FllL2(py = /DF(:B)2dx < IFlleyvVAD) = VAD). (3.14)

Combining Equations (3.13) and (3.14), we see that all z,2' € E with |z —2/| < §
satisfy

(TF)(z)— (TF) (2')| <e foreach Fel.

Hence, TU is equicontinuous.
In total, we get that TU is a relatively compact set and, consequently, T is a
compact operator.

For proving that TF € L?(E), we need to show that 7F has a finite norm in this
space (because of the definition of L2(E)). With the Cauchy-Schwarz inequality, we

obtain
ITFIRe = [T = [ | [ Ko dy] "

//K:L“y dy/F 2dydx

— [ K@y dey) / F(y)*dy
ExD D

S LU E><D)||FHL2 < +00. (3.15)

Equation (3.15) also shows that 7 is a bounded operator.

Let now U be the unit sphere in L?(D) and let (F},) be an arbitrary sequence in
U. Then (F,) has a weakly convergent subsequence. Without loss of generality, we
assume that ( n) is already this subsequence. The weak limit is denoted by F. Since
fE fD (z,1)? dydz < +o0, Fubini’s theorem tells us that fD ,y)?dy < 400 for
almost all z € F, that is K(z,-) € L?(D) for almost every = € E

For every such x, we obtain

lim (TF) (2) = lim [ K(z,y)Fa(y)dy

n—oo n—oo D

n—oo

= <K(.’L‘, ')7F>L2(D)
= (TF)(x)
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and, in analogy to (3.15), also

/ K(z,y)F, dy
=G(z)

Hence, |(TF,)(z)]? < G(z) and [(TF,)(x)]? — [(TF)(x)])? for almost every = € E,
where [, G(x)dz < +oo. Thus, the dominated convergence theorem allows us to
conclude that

(TF

< [ K ay| Bl
N ———— -1

lim [ [(TF) (@) do = / (TF) ()] da. (3.16)

Furthermore, with the weak convergence, we see that every H € L?(F) satisfies

(TEw H)p2 gy = (Fn, T H)2(py = (B, T H) 2 py = (TF, H)12(5) -
Consequently, 7 F, — T F, that is we have a weak convergence in L?(E). This weak
convergence in combination with (3.16) leads us to the strong convergence T F,, — T F
in L?(E). This result means that the sequence (7 E},) strongly converges to a limit in
TU. Due to the arbitrariness of the choice of the (sub-)sequence (F,,) C U, we obtain
that TU is relatively compact and, therefore, 7 is a compact operator.

3.11 a) We first calculate the single layer potential along the xs-axis by using the polar
coordinates

Y1 =T CoSQ, Yo =TSingp, y3 =10 (3.17)
with € [0,1] and ¢ € [0, 27]. We get

/ \/y1 +3/2 553_3/3)
27 r 5
= ————dedr =2r4\/r?+ =z
/0 /0 V2 + 3 3,20
=27 <\/1+x§|x3]> . (3.18)

Note the absolute value in (3.18). The limits of the normal derivatives then become

001’3

dw(y)

r=1

0, P(0) = Jim [1(0) - TR0+ (0))] = Jim ( a?;gP( ))

= i g e (V)] = i (2 ()]

x=(0,0,t)

= 27

and, analogously,

9y Py(0) = Tim 2 [27r (m—(—t))] = lim [%( ! +1>]

t—0+ Ot t—0+

=27.
Consequently, the jump is
Oy+Ps(0) — 0, Ps(0) = —4w = —4nwF(0) .
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b) By using again the polar coordinates (3.17), we obtain the double layer potential

L3 — Y3
Py(0,0,23) = dw
d ( 3) b |I’ — y‘3 (y)

/l /271' X3 1 r
= r —————dpdr = 27rm3/ ——dr
o Joo (r24a2)*? 0 (r2+a3)%?

r=1
) ( 1 1 )
—0 V1i+ax? o |zl

1
=212y | ————
( \/r2+x§>
T3
=27 | —=— —sgnx3 | .
<\/1+$§ )

With the resulting limits
Jim Fq(0,0.¢) m(0—1) =2,
tl_l)l(l)l_ P4(0,0,t) = —27(0+ 1) = —2m,
we obtain the jump

(Pa), (0) — (Pa)_ (0) = 4 = 47F(0).

3.12 For x € Br(0) and y € Sr(0), we have the inequalities

[z —yl <zl +lyl = lz|+ R, (3.19)
[z =yl = 2| = yll = ly| = |=| = R — |«]. (3.20)

Moreover, clearly,
R? —|z)* = (R — |z|)(R + |z]). (3.21)

Due to the requirements on U, this function must fulfil the Poisson integral formula
(in the version for the IDP-solution). With this formula as well as (3.20), (3.21), and
Gauf’s mean value theorem, we obtain

 RAz| 1 5

:mRU(O).

Analogously, with (3.19) instead of (3.20), we get

R—|z| 1
U(z) > (el + R 3R Js, 0 U(y) dw(y)
_ Bl ).

(I + R)?
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Let U: R?* — R be harmonic and non-negative. Then U fulfils the conditions for
Harnack’s inequality in every ball Br(0). Hence, we get for an arbitrary but fixed
x € R3 the inequality

R — |z| R+ |z|

R———=U((0)<U(x) <R-——-35U(0)
(R + [x])? (R — [z[)?
for all R > |z|. Cancelling R? leads us to
1L 1+ 2
E_UW0)<U(x) < E__U(0)

EAR EAR
) )
for all R > |z|. In the limit R — oo, we get
U(0) < U(z) < U(0).

Since x was arbitrary, we obtain U(z) = U(0) for all z € R3.

Let B, (xo9) C R be an arbitrary closed ball inside the region and let V' be the solution
of the IDP

AV =0in B, (x9), V =U on S, (z9) .

Since V' is harmonic, it has Gaufi’s mean value property on B,(zo) (and all balls
which are subsets of it). Hence, this also holds true for U — V.

In the proof of maximum principle I, we only used the following facts: the domain
is a region and the function is continuous and has Gauf’s mean value property on the
domain. Here, B, (z) is the considered domain and we get, in analogy to the proof of
the maximum principle, that U — V is either constant or it has neither a maximum
nor a minimum in B, (zo). However, since U — V vanishes identically on the boundary
Sy(xp), this must also be the case in the interior of the ball and, consequently, U = V/

on B, (xp). Hence, U is harmonic on B, (x). Since R is open, every xg € R possesses
a ball B,(z¢) with B,(xg) C R. Thus, U is harmonic on the entire set R.

Note that the standard theorem from real analysis on the interchanging of a limit
and a differentiation is not applicable here, because this theorem requires the uniform
convergence of the sequence of the derivatives. Therefore, we have to choose a different
way to prove the proposition.

Let (Ug) be a sequence of harmonic functions on R such that this sequence uni-
formly converges to a function V: R — R. Due to the harmonicity, each Uy has
Gauf}’s mean value property on every B, (xo) C R. Since (Uy) uniformly converges to
V, the limit limg_.~, may be interchanged with the integration in Gauf3’s mean value
property. Hence, V' also has this property (again in every closed ball contained in R).

Moreover, V' is a uniform limit of a sequence of continuous functions and is, there-
fore, also continuous. Hence, Exercise 3.14 tells us that V' must be harmonic.
A corresponding figure can be found in the book for comparison.

3.17 With the chain rule, we obtain

ou oz Oy ou : ou
o\ _ (o o) [0 _ [ CO8¥ Sn@ oz
ou oz Oy ou ou

% % % @ —rsme 71T CoSp @
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By inverting the matrix, we get

ou 1 1 ou

5 | rcosp —sing o
% " \rsing cosp g—g
such that
ou = cos a—U — 1 sin 3U
r PP T ¥ h,
oU . oU 1 oU

— =S5 — t+—cosp —
oy - S084,0

For the second-order derivatives we use the results from above and again the chain
rule and we arrive at

0?U ooU 1 0 oU
i Y ging——= 292
5p2 = 08 . s (3.22)

= COoS Ccos 827(] + — sin 8—U 1 O*U
T Porz T2 Y O 1P o o
1 ( ou 82U 1 oUu 1 0*U )

—;singo —singoa—i-cosgom . goa - sin 4,08 5
and
2
gyg =siny 887“(2[; + % Cos @ 8890 (ZZ (3.23)
:singo<sing082U—1cosgan—i-lcosgpaQU>
or?  r? dp r ordy
+1cosg0<cosg06U+sing062U—1 i ({)—[]—klcoscpa2 )
r or dpor T 8 0p?

By summing up (3.22) and (3.23), we obtain the Laplacian of U:

U 10U 1 9°U

AU = - vv
U= or? +7"8'r+7"28<p2

3.18 With Exercise 3.17, we can write the 2D Laplace equation in polar coordinates as

follows (for (z,y) # (0,0)):

AT=0&  F')Y(0)+ = F(IY () + = Fr)Y"(p) =
- PE )Y () +rF )Y () = ~F(Y" ()
AP PO V)
© Fo) TTFEE) T V)

where the latter identity holds true outside zeros of U. In the latter identity, we see

that the left-hand side only depends on the radial coordinate and the right-hand side

only depends on the angular coordinate. Hence, both sides must be constant. Thus,
there is a constant C' € R such that

r2F"(r) + rF'(r) = CF(r), (3.24)

Y"(p) = —CY () (3.25)

for all r € [0, R] and all ¢ € [0,27] — the missing points (r,¢) can be included by
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a continuous extension. For (3.25), we use (in analogy to the 3D-case) the argument
that U and, consequently, Y need to be 2m-periodic in ¢ such that only solutions of
the type

Y(p) = ajcos(jp) +b;sin(je), ¢ € 0,27,

for arbitrary constants aj,b; € R and j € Ny (with C' = j?) are admissible. The
particular case C' = 0 refers to a constant solution. For (3.24) with a fixed C' = 52,
we use the power series ansatz F(r) =Y~ cy,r™, which yields

o o o
E epn(n — Dr"™ + E canr™ = j2 E cnr"”

& Cn, (nz—n—i—n):j%n for all n € Ny

& ¢, =0 foralln €Ny {j} with arbitrary c; .

We get F(r) = ¢;r’. Since (3.24) is of order 2, we need a second solution which is
linearly independent to the known solution. It is easy to see that F(r) = logr works
for j = 0 and F(r) = r~7 works for j > 0. However, each one does not exist in r = 0.

Hence, F(r) = cr/ with arbitrary ¢ € R is the general solution. It suffices here to
choose ¢ = 1. Thus, we obtain the general solution of the 2D Laplace equation as
follows:

U(JZ, y)|(m,y):(z(r,<p),y(r,go)) = Z a]‘T‘j COS(j(p) + Z bjrj Sln(]@)
j=0 J=1

with arbitrary constants a;,b; € R.
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Basis Functions

Exercises

4.1 We start with V* - V*. For the calculation, we basically need the product rule and
the formulae for the derivatives of the local orthonormal basis ", €%, . In detail,
we get

1 — 12 9p? ot

1o B t 9 2 o2
S N N Iri(vice) Zr
a2 et T B g ot +(Vi-#)
) 02

2
:1aF—taF+\/1—t28<\/1—t28F>

The calculation of L* - L* is essentially analogous to the calculations above. We get

L*-L*F
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0 1 0 0 1 0
— V1 —t2e¥. ¢t —F —\1—t2e%. e = —F
ot VI— 0y c Eat<ﬁ_tza¢ )
_ 1 t g@ _29 _; t, ¢ _ 42 0
ma 6908 V1 t@tF ms e”1 t@go@tF
1, 9, 1 0 T, ., 1 o
+ €-—€ — b+ e ——= 5 F
V112 \/1 — 12 Oy \/1 —12 \/1 — 12 &p
=vV1-t(— +41 - \/1—t2
(«/ at 8t2 > 1—¢2
N 1 1 82F
V1—12 /1 —120p?
5, o 02 o 1 92
—taF—i—(l—t)@F—taF—l— 72, —F
1 02 0 0
_1—t287g02F ot [(1_”&4
=A"F.

4.2 We derive the formulae for the fully normalized spherical harmonics. We have

Yn,j (6(90, t)) =Cnyj Pn,|j|(t) Gj (30) >

where
. (2n+1)(n — [7DN(2 — djo)
e dm(n + [7])! ’
1 jj2 dt n N7 d
and

G(SO) — COS(jQD)a for ] = —n,...,(],
! sin(jo), forj=1,....n

The degree 0 case is easy:

Y
00 = i

The scalar case of degree 1 corresponds to the functions

Yip(&(p, 1)) = \/?75 = \/?537
Y1-1(& \/7@ 1- cos«p—\/;(l—ﬂ)cosgo:\/g&
Y118, 1)) = msmv \/>§2

Amongst the vector spherical harmonics, there is only one type which belongs to
degree 0:

1 & ] V1 —1t2 cosp

& =—— | V1—#tsingp

(1) _ - -
Yo,0(€(p, 1) = EYo0 = T : T )
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We continue with degree 1 and start with order 0. We get (the arguments of some
functions on the right-hand side are omitted for reasons of readability and brevity)

3 tv/1 —t2 cos 3 &1&3
Uo(E(e.t) = Vo= - [ VI=Psing | =/ | @& | .
™ t2 ™ é_%

1, 11 ) 1-2 /9
y%(&(%t)) = NG V%= B R (&oyl’()) e¥ + \/T <8ty1’0> et

3 —tcosp —tv/1 —t2 cos
1—t 3 ) 3 .
= — | —tsinp | =4/ — | —tvV1—t?sing
2 a7 8T

Ve -
3 _5153
=\ 3 —&8&3 |,
1-&
§o — Eob3 + &3
3
e = xuil = /o | —ag -+ a8
—&16283 + £16263
3 &2 3 [V 1—1¢2singp
=\/—|-&]|=1/=|-V1I-1cosp
8T 8T
0 0
For the orders +1, we obtain
3 (G182 3 (1 —t*) cosy sing
1 .
Z/M(f(%t)) =&Y = I & | = yp (1—t*)sin®p ,
§2€3 tv1—1t2sing
§f (1 — t2) cos? @
(1) B . 3 _ 3 9 ]
yl,—l(f(%t)) =&Y 1= P §1& | =/ — (1 —t )coscp sin

183 in tv1—1t2 cosy

for the normal vector fields, whereas the tangential vector fields of type 2 are

(2) _ gy oL L iy ¢ 1/1_t2 gy t
Y11 (8(p, ) = 2V Yl’l_\@m<ago 11)€”+ 5 5 11 )€

1 1 3
= — (1 —t2) cospe®

=/ — (cospe? — tsinpe’)

— sin ¢ cos @ + t? sin @ cos @
=z cos? o + t2sin? o
i 0—tV1—t2sing
3 (t2 — 1) sin ¢ cos ¢ 3 —&16
=1/ — | cos? ¢+ t?sin? =4/—|1-&
8 o ? 8 2l
—tv/1—t2singp —&9&3
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1, 11 9 1-¢2 /9
yg?zl(f(%t)) = ﬁ VY = % \/17—7152 <6§0Y171> e” + 5 <8tY1’1> gt

1 1 3
= (1 —1¢2) sinpe?

V2 vi—e Viar
NN R .
— cospe
2 Vir yi—gg °F
/3
= 8—(—sin<p5“"—tcos<p€t),
T

sin? o + t? cos? ¢

3
=\ 3r —singcos ¢ + tsin p cos p
T 0—tv1—1t2cosep
sin? ¢ + 12 cos? @ 1-¢&
/2 (t2—1)sin cos /2 —-&&
Vs peosy | = St 182 | 5
—tV1—t2 cos —£1&3

because cos? ¢ +t2sin? p = 1 —sin? p4t2sin? ¢ = 1 — (1 —12) sin? ¢ (and analogously
for exchanged sin and cos). Eventually, the missing functions of type 3 are

—€383 — &3+ €363
%?@@J»zgxdﬁzvgi ~6166 + 6166
& — &85+ &8

—&3 —t
3
NN e NN G
8 8

&1 V1 —12 cosy
, , 5 [ €168 + &6
i€ =Exu?y =y oo | & -6+ 66

—£3& — L+ &6
3 0 /3 0
= g 53 = g t
—& —V1—1t%sing

4.3 The term from the addition theorem for spherical harmonics is the searched repro-
ducing kernel: for all Y,, € Harm,,(2) and £ € 2, we obtain

| P Yl o) = 3 ¥asl6) [ Yaso) alo) )

j=—n

= Y Yi(©) (Y Yoo

j=—n

because {Y, j}j=—n, n is an orthonormal basis of (Harm,,(2), (-, ")12(q))-
4.4 For arbitrary but fixed ,n,{ € Q and each degree n € Ny, we find a 7 € [-1,1], by
using the mean value theorem of differentiation, such that

[Pa(& - ¢) = Paln - Ol = [Po(m)| 1€+ C =+ ]
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4.5

Basis Functions

< HP'I/ZHC[flJ} [(€—=mn)- (]

< ||Pallopyq 1€ —nllel- (4.1)
It remains to estimate the maximum norm of P). We already know that P/ (1) =
n(n+1)/2. We show that this is (just like for the O-th derivative) also the maximum

norm on [—1,1]. From one of the recurrence formulae of the Legendre polynomials,
we see that

Ppii(z) = 2n+ 1)Pu(x) + Py (2) (4.2)
for all n € N and « € [—1,1]. Obviously, P, =0=0(0+1)/2and P{ =1 =1(1+1)/2
such that a simple induction applied to (4.2) yields

| P (2)] < 20+ 1) | Po(2)] + | Py (2)]
(n—1)n _ 4n+2+n’—n

<2 1

<2n+1+ 5 9

~ (n+1)(n+2)

B 2
and, therefore,

1
[P ()| < n(n;) for all z € [-1,1] and n € Ny. (4.3)
Hence, the combination of (4.1) and (4.3) leads us to
n(n+1
Pu(e Q) = Paln- )1 < " W ey

From the Sobolev lemma, we know that functions in Hs(£2), s > 1, have uniformly
convergent Fourier series in the Y, j-functions. For arbitrary F' € H4(£2), s > 2, and
&,m € Q, we obtain then, by using the Cauchy—Schwarz inequality, the definition of

the [| - |3, ()-norm, the addition theorem for spherical harmonics, and Exercise 4.4,
that
2
oo n
P = FmP = > > FNnj) (Ya(€) = Ya,(n)
n=0j=—n
2
o n 1 S —S
—IX X (nr3) (n+3) P00 Gas(© - Vs
n=0j=—n

IN
[~]e
]+

—~

3

_l_
DO |

"
&

"~

>

Bl
-
e
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> 1\ *2n+1
SIFBuw X (n+3) Tt a-con)

n=0
[e.e]
1\ “2n+1 n(n +1)1
_ 2
W > (nrg) et L.
n=0
Hence,
1/2
Il =2n+1 n(n+1)
[F(&) = F)| < [|1Fllag@) | 5 1€ —nl.
e 2; i (n+1/2)%
The summand for n = 0 vanishes. The Lipschitz constant is finite, because its
summands are of the order O(n'™272%) = O(n3>72%), where s > 2 and, therefore,
3—2s < —1.
4.6 Previously, we had already derived a formula for V*® V*H + L* @ L*H. If we follow
this derivation and replace ‘4’ at the appropriate places by ‘—’, then we obtain
V*@V*H-L"®QL'H
o ( 1 O0H 1 (9H>
=R | —Y—m—= e Y— —
\/1—t2 dp  V1-12 9p
o 8H 0’H t O0H O0°H
+e"®e 3 + 5 A T
1—t Do Bap(‘?t 1—1¢2 Jp ~ Oty
O’H OH OH O*H
Y ®e? —t t—— — (1 — ¢
reree (1—t262 o Tt )8t2>
Lol @e? 82H+ t 8H+82H
Qe —_—
1-— t2 8<p at&p 1—1t2 dp  Opot
H
+et@e < \/1—752 \/1752881&)

+e'® ta—+(1 t)aZH— ! 82H+ta—H
et az 129 ot )

Hence, the subtraction of the transposed tensor leads us to
(V*QV*H-L*@L*H)— (V'@ V'H —L* 9 L*H) T
2 OH
S (Fe @ (_)
( ) V1—12 Op

OH
t T T t _ 42
+ (e'®e e®5)<2 1—t 8t>

=2["®@V'H—-(V'H)®e].



5.1

5.2

5.3

5

Inverse Problems

Exercises

The equation Az(F(x)|z|™P) = 0 in Bg(0) is solved, if and only if the function
Bpr(0) >  — F(x)|z|"P can be expanded in inner harmonics. This, however, is equiv-
alent to the fact that F is expandable in the functions Bg(0) 3 = +— |2|"1PY,, ;(z/|z]).
In the notation of the ansatz which we used for the inverse gravimetric problem, this
means that F, j(r) = f,j7""P*! for arbitrary constants f, ;. By inserting this into
the spectral formula which we derived, we arrive at

e
2n+1

R
g / P22 qp — v, (R+e)" foralln,j.
0

This holds true, if and only if

el R2n+p+3
2n+1 T 2n+p+3

Voj(R+¢)" foralln,j. (5.1)

By resolving (5.1) for f, ;, we obtain the unique solution

o0

R+e)"2n+1, " T
F(z)=) (2n+p+ 3)( ) 2" > VYo <|x|> .
j=-n

R2n+p+3 471G
n=0

Again we transfer the scenario to the notation of the ansatz which we used for the
inverse gravimetric problem. We get F), ;(r) = F#,jr for r € [r,7+6] and F, j(r) =0
else. The insertion into the spectral formula yields here

4 G ’7'+(5
T / 2 g F#,j =V, j(R+¢)" forall n,j
T

2n+1
4G (146" — 3 ‘

2n + 1 n+3 Fyj=Vaj(R+e)" foralln,j.

Hence,
2n+1 (R+e)" .
L — - —
Fn,j - V’l%] 47TG (n + 3) (T + 6)n+3 — ’Tn+3 for all n,jp.

Let us start with the properties of an inner product. For the positive definiteness, we
see that

<(z> ’ (Zj) >ny = (@.2)x + . y)y = llelly + i3 = 0, (5.2)

because (-, ")y and (-, -),, are inner products. For the same reason, the term in (5.2)
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can only vanish if both summands ||z||3 and Hy||§, vanish, which is true if and only
ifx =0and y=0.
Regarding the symmetry, we observe that

()G, ~teie s wn
et = (). (1)),

because (-, )y and (-, ), are inner products.
For the bilinearity, we use again that the new mapping is composed out of inner
products. We get

e GG~ (i) G))
Y1 y2) "\U3/) [ vy ryr+sy2) T \Y3) / sy
= (ra1 + swo,x3) p + (Ty1 + 8y27y3>y

=1{z1,23) y + (2, 23) x +7(y1,Y3)y + 5(y2,¥3)y
=1 ((x1, 23) x + (Y1,43)y) + 5 ((T2,23) v + (Y2, 93)y)

() Gy = CG)- o))

=r , +s , .

n Y3)/ xxy Y2 Ys) | xxy

Finally, we need to show that the Cartesian product space is complete. For this

purpose, let ((2,,yn)")n be an arbitrary Cauchy sequence in X x ). This means
(where V and 3 represent, as usual, ‘for all” and ‘there exists’):

() - (G)

Ve > 03ng¥n,m > ng: ||z, — Tml% + lyn — ym||§, <e?.

2
Ve > 0dngVn,m > ng: ' <e?,

that is

This implies, in particular, that
Ve > 03ngVn,m > ng: |2 — oy < e and |lyn —ymlly <e.
Consequently, (x,), is a Cauchy sequence in X and (y,), is a Cauchy sequence

in . Since both spaces were assumed to be complete, there exist (strong) limits:
Ty, — &€ X and y, — n € Y. In other words,

Ve > 03n1,m2¥n > ny, n' > ny: ||z, — €|y < e and |y — 1y <e.

For each £ > 0, we set n3(e) := max(ni(e),na2(e)). Then we get, for all n > ng(e):

H @) N (i) = Vllwn — &% +llyn —nlly < V22 =V2e.

XxY

(x"> — (5) inXxY
Yn n

and (X x Y, (-,") yxy) is complete.

Hence,
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5.4 We have the following equivalences (note that zx,&, PTE, Py € Hy and P is self-
adjoint):

Zaj (Tzj,zk) = (y,2z,) forallk=1,...,n
j=1

(TE z) = (y,z,) forallk=1,...,n
(TE¢, P2y = (y,Pzg) forallk=1,....n
(PTE, z1) = (Py,z,) forallk=1,...,n
PTE =Py

& PTPS="Py.

t e e

5.5 We first show that the Moore-Penrose inverse 7 fulfils the axioms. We already

know that 77+ = T Moreover, with the decomposition of an arbitrary f € X

into f = fi + fir, fx € ker T, fio € ker(T)*, we obtain analogously that 77 f =
T*T fir is the minimum-norm solution of

T T(T*Tf) =TTf.
——
€T (X)=ker(T*)*
Hence,
T  TYTf ~Tf.
~——
ET+(D(T+))=ker(T)+

Consequently, we have
—1 —1
T+Tf = <T|ker(7—)L> Tf == (T|ker(7—)l> Tka_ = fkj_ .

In total, we get
TT = Peewryt = Pre(o(r+)) = Pry
Furthermore, for arbitrary f € X and g € D(T "), we obtain
TT Tf= Pm(Tf) =Tf
and
TTT g=Prepry (TTg) =Ty
such that

TTHT =T and TTT+=T".

Let now S be an arbitrary operator which fulfils the Moore—Penrose axioms. If g €
D(TT) and h € X are arbitrary, then the fourth axiom yields

(T*TSg ~T 9.5 = (TSg — 9. Th)y = (Prizye —9.Th)
- <_PT(x)lg’Th>y =0
Thus, f := Sg solves the normal equation T*7T f = T*g.
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We decompose, like above, f into f = fi + fir, fx € ker T, fio € ker(7)* . Since
the second axiom yields STS = S, we must have STSg = Sg and, therefore, the
following chain of implications (where we use the third axiom):

= ST (fu + fir) = fi + fir = ST frr = fiu + fir
= ,mekl = fk + fir = fi=0
—_———
€ker(T)+
= Sg € ker(T)*+ = Sg=T"g.
Hence, S = T .

a) Since A is injective, we have ker A = {0}. On the other hand, we also have

ker A = A*(X)+ = A(X)*, because A = A*. Hence, A(X) = X.
b) With the Cauchy—Schwarz inequality and the assumption on A, we have

|Az|| ||z]| > (Az,z) > 'yHacHz forallz € X

such that
|Az|| > ~||z| for all z € X. (5.3)

Since A is injective, there exists an inverse A~': A(X) — X. Due to (5.3), it is
continuous and we have

1 1
HA_IyH < 5 HAA_IyH = 5 lly]| for all y € A(X)

such that || A~!|| <y~ !. We have already seen that injective, linear, and continuous
mappings between Hilbert spaces are continuously invertible on their image if and
only if the image is closed. In combination with part a, we see that this closed image
must be the whole space X. Thus, A is also surjective and we get the continuous
inverse A™1: X — X.

Clearly, due to Fubini’s theorem, the adjoint operator is given by

(TF) (z) = /D W) Fly)dy, zeD.

a) From Exercise 3.10, we know that the operator T is compact. Thus, Fredholm’s
theorem tells us that o,(7) is finite or countable. Let now p # 0 be an arbitrary
eigenvalue of T, that is ker(7 — uZ) 2 {0}.

Let us assume that the image of 7 — uZ is given by L?(D) = H (i.e. we assume
that 7 — pZ is surjective). Then whichever element z¢ € [ker(7T —uZ)]\ {0} we choose,
it is also an element of this image. Hence, there is 1 € H with (T — uZ)z1 = xp.
However, due to the assumed surjectivity, this initiates a never-ending recursion:
there is zo € H with (T —puZ)xs = 1 and so on. We obtain, consequently, a sequence
(Tn)n C H with (T — puZ)z, = x,—1 for all n.

We continue with another assumption: let us consider the case that the first [
elements, that is xg,...,x;_1, are linearly independent while the first [ + 1 elements
are not, that is there exist ag, ..., a;_1 such that z; = 22;10 apxy. However, then we
get (by using the linearity of 7 and the construction of z() that

-1 -1 -2
x1-1 = (T — pL)x; = Zak(’T — pL)xy = Zakmk,l = Zak+1xk . (5.4)
k=0 k=1 k=0
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The result of (5.4) contradicts the linear independence of x, ..., x;_1. Hence, amongst
our nested assumptions, the inner one is false (for every [). Thus, all x,, together are
still linearly independent (i.e. each finite subsystem is linearly independent).

We can now use the Gram—Schmidt orthonormalization to get orthonormal vectors

k

€L = Zﬁkyjmj for all k.
7=0

The application of T yields

k
Tex =Y Bej(T — I + pI)z;

§=0

k
= Bk,ok o + Z Br,j (xj—1 + pxy)

Jj=1
k—1
= peg + E Br,j+12; 5
Jj=0
where Z?;é Br,j+1; € span{xo,...,xx_1} = span{ep,...,er_1}. Hence, there exist

coefficients ~;, ; such that Tej = Zj}:o Yk je; for each k, while v, = .
Let now k,l € Ny where, without loss of generality, £ > [. Then the orthonormality
of the e; yields

k
2 ) gl = el (5.5)

j=i+1

I
2
I Tex = Tell” = e — 1y
=0

In our nested hierarchy of assumptions, the outer one now also obtains its contradic-
tion: since 7T is compact, the sequence (7 ey), must have a convergent subsequence
(which is, then, also a Cauchy subsequence). Hence, for each ¢ > 0, there exists kg
such that, for all k,1 > ko, we have ||Ter — Te|| < e. In combination with (5.5) and
the fact that ~y; , = p for all k, we see that ;1 = 0 would have to hold true, which was
excluded.

Thus, we have (T — pZ)(H) & H and, since this image is closed according to
Fredholm’s theorem, there is a non-trivial orthogonal complement. Let, therefore,
x* € (T — uZ)(H))* \ {0}. We get:

(T — pD)x,z*y =0 forallxeH
< (¢, (T* —pI)z*) =0 forallzcH
< (T*—pZ)z* =0,

which means that 77 is an eigenvalue of T*.

In the same way, we see that, if 7 # 0 is an eigenvalue of 7*, then 7 = p is an
eigenvalue of 7** = T.

b) From Fredholm’s theorem, we know that the null spaces ker(7 — AZ) and
ker(7* — A\Z) are finite-dimensional with equal dimensions for A # 0. This actually
concludes the proof of this proposition.

If we want to show the identity of the dimensions without using the corresponding
proposition from Fredholm’s theorem, then we can proceed as follows: let {x1,...,z,}
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be an orthonormal basis (onb) of ker(7 — AZ) and let {yi,...,ym} be an onb of
ker(7* — \T). Without loss of generality, we assume that n < m (otherwise, exchange
T and 7). Let now S: H — H be defined by

Sz = Tx—Z(:B,xj>yj, reH. (5.6)

J=1

Since T is compact and the operator corresponding to the summation in (5.6) has a
finite-dimensional image and is, therefore, also compact, the operator S is compact
as well. Let now x € ker(S — AZ). Then

(T-XD)x=(T-S+S—\N)z = i (x,25) yj (5.7)

j=1

and, consequently, due to the orthonormality, (5.7), and the construction of the yy,

<Z <33a90j>yj,yk> = (z,z) = (T — AD)z, yx)

j=1
= (z,(T" = M) yp) =0 forallk=1,...,n.

Hence, (T — AZ)x = 0 and x € ker(7T — AZ). With the orthonormal basis, we see that
n
= (x,xj)x; =0.

—1

J
Consequently, ker(S — A\Z) = {0} such that A is not an eigenvalue of S. Since A # 0
and S is compact (which implies that non-vanishing elements of the spectrum must
be eigenvalues), A cannot be an element of the spectrum of 7. Hence, in particular,
(S—=MI)(H) =H.
Let us assume now that n < m, that is there exists y,4+1 as an onb element. Due
to the considerations above, there exists z € H with yp41 = (S — AZ)z. This implies
(by using again the orthonormality)

||yn+1”2 = <(S - )\I)z, yn+1>

= <(T— M)z — Z (z,25) yj,yn+1>

j=1
= (2, (T" = AZ) ynt1)
=0

However, y,+1 = 0 cannot be a part of an onb, which is a contradiction. Consequently,
n=m.
¢) The equation is solvable. < G € (T — AI)(H) = ker(T* — \I)* < G Lker(T* —
AZ). Remember that, according to Fredholm’s theorem, (7 — AZ)(H) is closed.
d) The equation is solvable. < G € (T* — AI)(H) = ker(T — \I)* < G Lker(T —
AT).
5.8 Since T is compact, it must have a singular-value decomposition

Tx = Zan(x, Un) yVn, TEX. (5.8)
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We set now p = (o + f)/8 and q = (a + f)/a. Then, obviously, 1/p + 1/q =

(B4 a)/(a+ B) =1 and we may apply the Holder inequality as follows:

HITW;UHi = 3" 02 (o, )
= Z (0’25 |<x,un>x‘2/p> |<$,Un>;(|2/q

n

1/p
> (o2 \<x,un>x|2/p)p] (Z (x, un>x|2q/Q>

n

1/q

IN

Hence, by using the Bessel inequality in the last summation term, we get

B/(a+B) a/(a+B8)
T e,

el < v

1 8/(a+B) a/(a+3)
T (zm,uw) |

The derivations are here rather simple. According to the assumptions, the singular-

value decomposition of 7 is given by (5.8).

a) Since the singular values of a compact operator tend to zero (or are only a finite

set), we get, for all z € X, the inequality
2 2
IT2l3 = on (@, un) x| < maxan Dy [(z,un) xf,
n

while || Tu1||y = ||o1v1|ly = o1.
b) We start with the following expansions:

Ty = Zan Y, Un)yun € T*(V) C ker(T)*,
)T = Z ¥ (x un xUn + ©(0 )Pker(T)xy

= T*y_ZQO Un yavn>yun+0

(5.9)

(5.10)

for all z € X and y € ). Since (5.9) is the singular-value decomposition of 7*, we

get, for all y € Y, the identity
e(TT )y = (T**T*)
- Z 4 ,'Un yUn + 90( )Pker(T*)y .

Hence, since v,, € ker(7*)* for all n, we obtain with (5.9) and (5.10) the identity

T*(,O (TT*) Y= Z O'n<z P (O—I%) <ya Uk)yvk + SO(O)Pker(T*)ya Un>

n

= ZUHSO y7“n>yun

= (T*T) Ty forallye ).
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¢) Since we have

Y(TT)x = Z (0 (0721) (z, un>Xun + ¢(0)Pker(T)x

n

for all x € X, we also get
(T T) (T T)w = Z 0 7) (@, un) ytin + 9(0)8(0) Py oy

where the projection certainly fulfils 73 ker(T) = = Prer(1)- In analogy to part a, where
we complement {uy}, in order to obtam an orthonormal basis for X', we obtain, by
using g, — 0 and the requirements on ¢, 1,

llo (T*T) 4 (T*T)|| = max ({|¢ (07) ¢ (o7
= sup {|¢ (o1) ¥ (o7) |
)

< sup fp(MP(A)]
AE[0,[IT11

)|}, U{le(0)w(0)[})
T

d) We use (5.10) from part b and proceed in analogy to part a. Then we obtain

le (T T = sup {Je (o2) o}, = _sup (o) VA) .

A€[0,[IT117]

5.10 Let {(on, un,vn)}n be the singular system of 7 and assume that the singular values
are arranged in a monotonically decreasing order.
a) For ¢ = 1, the inequality is trivial. So, let ¥ < 1. With the Holder inequality for
p=v9tandg:=(1-9)"1 (=pt+q¢ =9+ (1-19) =1), we obtain

1203, 4 19y :Z oy =D () o

_ Z( ) (o2 v o)

(Za xunX|) (ZU (2, un) |2>H9

9 -9
= el el30

1-9

b) We use Exercise 5.9 to obtain (by utilizing o, /01 €]0, 1] and v > p)

]azH# ZO’ (x,up) |2
i 2
—or “Z(;j) (2,00)

—2v

— g
<o) (U) [ )
01 (= “)Za (2, un) |

= | TP )22
5.11 We have
fl - f2 S XU?
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1T (fr = My <ITfi=glly +llg = Thally <2,
11 = fall, < W fally + [[f2ll, < 2max {[|fll,,, I 2], } -

Hence, with the corresponding theorem on the best-possible worst-case error, we
obtain

11 = follx < ew (26, 2max{|[ 1, [ f2],}) -

5.12 As usual, the singular system of 7 is denoted by {(oy, un, vn)}n. Let f+ € X, with
|/l < o, that is there exists w € X such that f* = |T|#w and || f |, = [w|x < 0.
Moreover, let g := T f*. By using propositions which we had before in the book as
well as part ¢ of Exercise 5.9, we obtain

17 = Ragll = |3 (0" = Fr (02) 00) g2 )y
n X
- Z (1—02F; (07)) 07, (g, vn)yuin
n X
= Zpt (Uz) <f+7 un>Xun
n X
= Zpt (ai) T (W, tn) ytn
n X
= |lp (7Y (T T
< sup (Ipe(o)| ")
oc[0IT12] ( t ) )
< wu(t) e (5.11)

for all ¢ €]0,¢t0]. Let now g° € B-(g). Then, with (5.11) and derivations from earlier
in the book, we see that there exist constants Cs, Cy € R™ such that, for sufficiently
small € (guaranteeing that v(e) < o),

177 =Ryl x <157 = Ry@all 1 + Ry = Raeo |
< w,(v(e)) 0+ COpM(~y(e))
< C3v(e)" %0+ e \/CpCyry(e) /2

o\ 2D o\ 2] 72
Cy <Q> 0+ e/ CrCy [Cl <Q> ]

= 0305/25u/(u+1)Q—u/(u+1)+1 +e mcflﬂgl/(uﬂ)s—y(yﬂ)
— Cpl /D gn/(ut1)

< (s

where Cr = supge[Q”T”%}(U|Ft(a)]) and C = 0305/2 +VCrCy 0;1/2'
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The Magnetic Field

Exercises

6.1 f is curl-free and defined on the whole R? and is, therefore, a gradient field. It is easy
to see that f(z) = grad (|z|?/2) = grad (|z|?/2) + curl 0.
g is divergence-free on the whole R3. Therefore, g is a curl field, that is g =
grad 0 + curl A. For finding the corresponding vector potential A, we observe that
g = curl A is equivalent to the system

0 0
[ _— 714 p—
0xo 3 Oxs 2= 02
0 0
LA - L Ag =
81‘3 1 Bxl 3 3,
0 0
Ay Ay =
8.%'1 axg ! o
A closer look reveals that
2
x
L
A(x) = 5 Ty
3

is one possible solution.

Note that the Helmholtz decomposition is not unique.
6.2 For f(r§) = e%(p), r €la, B[, £ € Q, we obtain

1 19 o\ [0
. I ® — ty/1—¢12=).
V- f(ré) r<5 m&p—i—g (%) co(s]cp
—cos
zés‘p- —sing
rv1 —t2 0

Hence, f is divergence-free. Moreover,

T

/5 e

||

—dw

for each p €]a, B[, we get

() / ¥ e"dw=0.
S,(0)

Consequently, f is solenoidal due to one of the criteria which are listed in the book.
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Since f is obviously also tangential (to each S,(0)), it must also be toroidal (due to
another criterion in the book). Since only the zero function is toroidal and poloidal,
f can, therefore, not be poloidal.

The Mie representation of the toroidal function f is, thus,

f(z) =V x (z x V0)+ 2z x VQ(x).

With sufficient experience, one can guess a toroidal scalar @ here. If one does not
succeed with that, it is also possible to make some conclusions on requirements on @
for finally obtaining a possible Q.

With the known properties of the local orthonormal basis and the cross product,
we deduce that

1=¢e%-e=(zxVQ) ¥ =((re") x VQ) - ¥ = (¥ x (re")) - (VQ)
= ' (VQ)
and
0=e%-e' =(2xVQ) &' = ((re") x VQ) - &' = (¢" x (re")) - (VQ)
=re¥ - (VQ).

It would not be helpful to use 0 = &¥ - " as well, because " is anyway orthogonal to

the cross product = x VQ. We obtain now
1
VQ(r) = —=—¢' + Fe"
r

for an unknown F'. Since gradient fields are curl-free, we also get

0=V x(VQ)

1 1 0 0 1
_ -~ 1—¢2 _Z gt Fer
< \/78 +5\/ t8t>x<r€+ 5)

+e" % <15t> +e" x <8F57">
r? or
:_716“0X(—t€“0)+7 (\/1—152 )
t rv1—t2
Vi—i, < -1 ) \/1—752
X +F

Since merely radially dependent summands are irrelevant for toroidal scalars, we try
VQ(ré) = —r~ et that is

0o 1 1 0 0 1
r_ 4 = 4 __ _ 42 — _ Tt
R Oy eV ) | PR
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Hence, % =0= % and we need

This leads us to

Therefore, one possible choice as a toroidal scalar of f is

Q(x) = —arcsint = — arcsin {3 = — arcsin % .
T
Note that arccosy = m/2 — arcsiny such that Q(x) = arccos(xs/|z|) is another

possibility.
The divergence of f := et is given by

V-f—i(e“" ! i—i—at 1—t28>'5t

Since this vector field is not divergence-free, ! is neither solenoidal, nor poloidal, nor
toroidal.
For f =", we obtain

Lolo| —2jgq28 3 jg2 2

3
T
=[] = |z x| [ [z

J

Thus, €" is also neither solenoidal, nor poloidal, nor toroidal.
For the normal basis vector field, it is clear that

ef=£6-1+V0+L%0.

For the tangential basis vector fields, we remember that et = €” x ¥ and ¥ = " x
(—¢?). For this reason, we try the ansatz e = V*G, because this would automatically
yield ¥ = L*(—G) (actually, €¥ = V*G would not work, because we know from
Exercise 6.2 that 0 = V* - ¥ such that we would get 0 = A*G, which is only true for
constant GG, which, however, yield V*G = 0).

If e = V*@, then we need

1 0 0
b= (e¥ — +eV1-2 )G,
<5 — &p—l—s t (%)G
9

This motivates the ansatz % =0 and

\/1—t2%§j:1.

The latter equation leads us to
o6 _ 1
ot J1—2’
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which is solved, for example, by G(£(p,t)) = arcsint = arcsin 3. Hence,

gt :§~O+V*arcsin|x—3|+L*O
x
and
e/ =£-0+V0O+L" <—arcsin|x?”) .
x

Note that arccosy = m/2 — arcsiny such that arcsin may, for instance, be replaced
by — arccos above (since constant summands are irrelevant).

The solution basically requires the rules for the use of the Levi-Civita alternating
symbol as well as Schwarz’s theorem (all summations are over 1,2, 3):

curlcurl LP = Eijk i(curl LP)
- 8.7}j
3k i=1,2,3
o [0
= Z €ijkEklm O [&C(LP)m]
Jik,lm / : i=1,2,3
> ey (o (g, )|
= kijCklmEmnp 35— | 5 ngy_
gk, lm,n,p Ou; 0 Oy i=1,2,3
0 oP 0*P
'ZZ (01, ji) e P o {l oz, L 8331837,3}
Jibmn,p i=1,2,3
= Z (5il5jm - 5im5jl) Emnp
Jlmmn,p
<o 2P 45, TP L, 0P
fn Or;0x, 7" 0x; 0z, " Ox;0:,0z, s

B Z o o0’P v 0?P ‘1‘25' 3P
N M oz 0x, L 0x:0z) anpdn O0xj0x;0x),

3 ) Jm.p i=1,2,3
—(VxVP);=0
Z 9P . 0?P N 3P
_ . . S it
— \"" Qj0x, " Owjox,) " =" 0220,
Jp Jmp i=12.3
=2(VxVP);=0
ZZ 0 0 0P 0 o*pP
_ e 20 D S PE ati
— Jne nal‘p &rj 81,‘1 mp nf)xp - 833?
N i=1,2,3 P J i=1,2,3
=L; —2xV(AP)

=L-V(VP)=L*(£5+1 V*)VP=0
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Hence, since toroidal fields are divergence-free, we obtain
ALP = graddivLP — curlcurl LP = —curlcurl LP = LAP.

Alternatively and a bit shorter, one can also proceed as follows:

2
ALP = Z;Q(x x VP)
x4

7 J
- (ST
R i=1,2,3
25 05 0*P N o3P
p— ’:L' S —
2=\ T 0aj0m T 0070
i=1,2,3
0’P PP
= QZézkla o, +Z€zk1$ka e
gk i=1,2,3
0 0P
=2V xVP+ Zélkla:ka ax
=0 kil i=1,2,3
=z X VAP

=LAP.
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Exercises
7.1 While we have
X1
(X,0)=| X2 | =X,
X3

B;1(0) is a simple body, and ¢ is obviously twice continuously differentiable, we ob-
serve, however, that the deformation gradient is

F(X,1)
—2X e~ (XTHXE)1 X, 4 o= (XTHXE)E —2Xpte~ (XTHX3)tx) 0
- _2X1te—(X1“+X§)tX2 _2X2te—(xf+x§)tx2 +e_(Xf+X22)t 0
—2Xyte” (TR 4 1) X, “aXpte EPD (xR

such that the Jacobian
J(X,1) = e—(X12+X22)t(t 1) <4X12X22t26—2(X12+X§)t _ 2X12te—2(X§+X§)t
_ 2X22tef2(X12+X22)t + o 2(XTHX3)t
_axixgie (X))
= e ST 4 1) [AX2X242 — 2 (X2 + X2) t+ 1 — AX2X2H2]
— BT 1) [1 - 2(X7 + X2) 1]

vanishes for all X with X?+ X2 = (2t)~!. Hence, the general assumption on motions
is violated.

The material velocity and acceleration are determined as follows:

— (X7 4 x3) e (XPHXE) X1
V(X,t) = — (x? +X2)e (Xt+x3)
— (X2 + x3) e~ (XEHXD) (4 4 X3+e o X2t X,
0
ei(X12+X22)t Xl +X2 0

t—l—ng X3
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and
T X, 0
AX ) =—(X2+x2)e () (x20 x| X, |+ (o0
I (t+1)X3 X;
2 2 0
o (XE+X8)t (x2 1 x3) [ 0
X3
L X1 0
(R L (x24x2)% [ Xy, | —2(x2+Xx2) | 0
(t+1)X3 X3

7.2 According to the Laplace expansion of a determinant, we have

n
det A = Z ajr det Ajp (—1)77F (7.1)
k=1
for all j = 1,...,n. Note that each a;; does not occur in Aj;. Moreover, with the
chain rule, we get
Odet A da;
3 (det 4) ] . 7.2
e kz S (72)

By combining (7.1) with (7.2), we obtain

da,;

j+k 445k

detA kg 1detAjk 1) TR
]7

which completes the proof.
7.3 It is clear that, if FF = G, then the integrals of F' and G must coincide on every
arbitrary domain.

Let now [, F(Y)dY = [,G(Y)dY for every nice region & C B. Moreover, let
X € B be an arb1trary point. We assume that F(X) # G(X). Without loss of
generality, let F'(X)— G(X) > 0. Since F' and G are continuous and B is open, there
exists a ball B,(X) C B such that F'— G > 0 on B,(X). Obviously, B,(X) is a nice
region. Hence,

0= / F(Y)dy — G(Y)dY = F(Y)-G(Y)dy,
H(X) By(X) By(X)

which contradicts the positivity of F'— G on this ball. Since X was arbitrary, we have
F=GonB.

7.4 Clearly, ¢o(X) = X for all X € B;(0), the ball B1(0) is a simple body, and ¢ is twice
continuously differentiable. Moreover, the equation

X1(1+1) 71
o(X)= | Xo (1+¢%) | = | 22
Xg(l + 2t> T3
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is easily solvable for each t € ]Rar :

X, 1

T 11
Xo | =0 (@)= | thpaa | (7.3)
X3 ﬁm

which means that ¢; is invertible. The image ¢:(B1(0)) is given by all z € R3 for
which

x| <1+t

and

2
|wo| < 4/1— (ﬁ:t) (1+1¢7)

2 2
T i)
\x3|<\/1—<1+t) _<1+t2> (1+42¢)

and is, therefore, an open set (more precisely, an open ellipsoid). Hence, ¢ is a c@.

and

regular motion. Eventually, we obtain the deformation gradient

1+t 0 0
FX, )= 0 1+ 0
0 0 1+2t
with its determinant
JX,t) =1+t (1+#)(1+2t)>0 forallt>0. (7.4)

Hence, the general assumptions on a motion are satisfied.
Regarding the equation which has to be validated, we calculate

0J
S0 =1 (I+#)(1+2t)+ (1 +t)2t(1+2t) + (1+t) (1 +¢3)2  (75)
and
X1
VXt = |2tx, | . (7.6)
92Xs
We use (7.3) to transfer (7.6) into spatial coordinates which leads us to the spatial
velocity
1
T+ 1
’U(ZE, t) = 1_?_7tt2 €2
2
T3 43
Hence,
1 2t 2
di t) = . .
vy v(z,t) 1+t+1+t2+1+2t (7.7)



7.5

7.6

7.7

FExercises 37

By combining (7.4), (7.7), and (7.5), we finally get

(dive v (¢e(X),8) J(X,t) = (L + ) (L +2¢) + (1 + 1)2¢(1 + 2¢) + 2(1 + t) (1 + ¢7)
o

=2 —(X,1).

Since ¢ is a C@-function, we can apply Schwarz’s theorem such that we get, due to
the chain rule, the identity

0 d 9 o 0 0
aF(X t) = at 8X¢(X t) = 8—Xa¢(X t) = aiXV(X £)
7‘/ (¢t_ ((bt(X)) 7t) = aiXU (¢t(X),t)
9 ¢ (X)

= Lo, n - 22
= Lo (@u(X), 1) FX 1)

The requirement on a perfect fluid means that every non-trivial vector is an eigenvec-
tor of the Cauchy stress tensor ¢. In particular, there exist scalars A1, A2, A3 € R such
that o/ = )\jzsj for all j = 1,2, 3, where ¢/ is the usual j-th standard orthonormal
vector. Since o€’ yields the j-th column of o, we see already here that

A 0 0
g = 0 /\2 0
0 0 A3

However, the vector (1,1,1)T is also an eigenvector, that is there is Ay € R such that

1 A4 1 A1
cll]l=1X], while o|1]=1]M
1 A4 1 A3

Hence, there is A(= A; Vj) such that

A0 0

c={10 X O

0 0 A

We set p:= —A.
For the divergence of o, we calculate (with I representing the identity tensor)

p 00 div, (p,0,0) =
divy o =divy (—pl) = —divy [0 p 0| =— | div, (0,p,0) | = — 8%
00 p div, (0,0, p) =

= —V.p.

For verifying that R(U) = (1/2)(curlxU) x I, we calculate the right-hand side as
follows (a single index attached to a tensor refers to its corresponding row):

3
(curlxU) x I = Z emm(curl U)y Iy,

nm=1 1=1,2,3
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= Z Elnm Z Enjk 3~ 8X Im
n,m=1 7,k=1 =123
3
> %
= Elnménjk 7~ Im
n,m,j,k=1 8X]
11, l:17273
3
B UL |
- Z (_Enlmsnjk) 67)(] m
mm,j k=1 1=1,2,3
3
Uy,
= - Z 5l] mk — 5lk6jm) Ip,
X,
m.j k=1 1=1,2,3
3
- Z o UL,
8& laxjf
1=1,2,3
3 3
= — — I iy
X, ‘90X, 7
k=1 1=1,2,3 J=1 1=1,2,3
ou;  9Uz  0Us ou;  oU;  9Uy
0X1 0X1 090Xy X1 0X2 0X3
— oUq oU> oUs + oUy oUy oU>
0Xo 0Xo 0Xo 0X1 0Xo 0X3
oUq oUs oUs oUs oUs3 oUs
0X3 0Xs 0X3 0X1 0X2 0X3

—(VxU)" +VxU.

Moreover, in the context of the linearization, we wrote (actually, without any loss of
accuracy) F' = I + VxU. Hence,

F=I+VxU=1I+-> (VXU+(VXU))—l—%(VXU—(VXU)T)
=I+E+R.

7.8 We have S ~ 2= : £ due to Hooke’s law. With the formula for an isotropic =, we get

3
Z [A0ijort 4 o (Oirdji + 6adjn)] Em

3
= 2/\(51‘3‘ Z Epk + 21 (&'j + gji)
k=1
oU, U, ou;, aU; oU; o
= A% Z <an * an) T <an Tox; Tax; T ax,
, oU;  aU,
=2X6;divx U +2u <3Xj 8Xi)

such that

S ~2\divx U I +4u€ (7.8)
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and

trS = ZS] _6)\d1vXU+2uZ<aU +g§£ )

7=1
= (6A+4p)divy U.

Moreover, with (7.8), we also obtain

1 1 A
~ — (5§ —=2)\di I)=— ———trST | .
& o (S ivx UI) m (S o rS)

We have from Exercise 7.8 the identity

1 A 1 Y
Ex—(S—~F——trST) = — | Snuet@e! - Sl .
4M< Sh+2u > 4u<11€ P T T2 “)

Hence, &;; = 0 whenever ¢ # j. Moreover,

1 A B A+
511_5114M<1_>_SH2 (

3A+2u w(3A 4 2p)
and
A
Epp=E3~—-51]———.
22 33 11 13N+ 200)
Therefore, Young’s modulus is given by
Su o 2u
—-— 3N+2
En A+up ( 2
and Poisson’s ratio is
522 __@N A 2#(3)\—1-2#) _} A
511_ 511_4/1(3>\+2,LL) )\+,u _2)\+,Uz'

With the assumption of isotropy, we get
o=T:(Vyu) = Adivyu)l + p |Vzu+ (Vmu)T] .

We have already seen that the ansatz u(z,t) = ap(z -k — ct) for a plane progressive
wave leads us to

gz; = aik;¢' (z -k — ct)
such that
divou=a-k¢'(x -k —ct)
and

Vou+ (Vou)t =@z k—ct)(a@k+k®a).
Hence, we get the stress tensor
olz,t)=¢'(z-k—ct) Na - klI+pula®@k+kxa)l.
For P-waves, where « || k, we see that this turns out to be

op(x,t) =@ (x-k—ct) Na-kI+2uaxk),
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while we obtain for S-waves, which correspond to o 1 k, the stress tensor
os(z,t) = (z-k—cthu(a®@k+k®a).

From Exercise 3.17, we have the following representation for the Laplace operator in
2D-polar coordinates:

QU 10U 10U

i TR e

Hence, the separation ansatz U(x) = F(r)G(p) for the Helmholtz equation AU +
w2U = 0 leads us to

AU

F/()G(e) + - F(rG(0) + 5 FrG(9) + PFEG@) =0, (79)

Dividing (7.9) by F'G outside the zeros and multiplying with 72, we arrive at

r2 "
<F”(r) +F() + WQF(T)> 3 = ((;")) .

Since we completely separated here the dependencies on the two polar coordinates,
both sides of (7.10) need to be constant, that is there is a constant C' € R such that
r2F"(r) + rF'(r) + W?r?F(r) = CF(r), (7.11)

() = —CG(y). (7.12)

Due to the nature of the polar coordinates, we need G(0) = G(27) and G'(0) =

G'(27). Note that such identities for higher-order derivatives are then implied by
(7.12). We distinguish three cases:

C < 0: Then the general solution of (7.12) is
G(p) = Crexp (—\/—C’ @) + Caexp (\/—C’ <p) .

However, the 27-periodicity requirement can only be fulfilled by this solution
if C7 = (5, which can easily be seen by solving the corresponding 2 x 2 system
of linear equations.

C = 0: Then the general solution of (7.12) is

G(p) =C3+ Cup.

(7.10)

Obviously, the 2m-periodicity is given if and only if Cy = 0.
C > 0: The general solution of (7.12) is now

G(¢) = Cssin (VO ) + Cyeos (VCp) .
The 27-periodicity requirement leads us to
Cs = Cssin (2m@) + Cj cos (%ﬁ) ,
C5v/C = C5v/C cos (2nV/C) — Cp/Csin (22T .
This system of linear equations, namely
0 = Cssin <2mfc) G [Cos (%@) — 1} ,
0= Cs [cos (27v/C) — 1] = Cgsin (22VC) |
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is non-trivially solvable if and only if it has a vanishing determinant, that is
2
— sin? (2#\/5) - [cos <27T\/5) - 1] =0. (7.13)
Equation (7.13) is equivalent to

cos (277\/5) =1.

As a consequence, we get non-trivial solutions if and only if v/C € N.

Therefore, the general solution of (7.12) with 27-periodicity is representable as

o0

G(p) = Z (Agsin(kp) + Bg cos(ky)) , € ]0,27].
k=0

Note that k = 0 corresponds to the case C = 0 and Ay := 0.
With the knowledge that C = k?, k € Ny, we can write (7.11) as

r2F"(r) 4+ rF'(r) + (w2r2 - k‘2) F(r)=0.

We substitute now ¢ := wr and F(p) := F(r) and obtain
O F"(0) + oF (o) + (6" — k*) F(0) = 0. (7.14)

Hence, we see that every multiple of the Bessel function Jj solves (7.14) and, since
the solution needs to exist for p = 0, these are the only solutions. Consequently, all
solutions of the Helmholtz equation on the 2D-disc are given by

Uz(r,p)) = Z Ji(wr) (Ag sin(ke) + By cos(kyp)) .
k=0

We have already seen that ﬁn,j solves
w2 nn+1)

. 2
R+ 20+ (% - "

) Fpj(r) =0

(with a finite limit » — 0+) if and only if ﬁn,j(r) = Cjp(welr) for an arbitrary
constant C. Hence, we have

which is equivalent to
Jm(x) + ;];($) + (1 e > Jn(z)=0. (7.15)

Let now G(z) := (sinx)/x. Then we have

cosxr sinx

G'(x) = —=
(o) = 22 2F
sinx Ccos X sinx
G'(z) = — -2 +2
() x 22 3

Hence, we obtain

2 sinx CcoS T sinx CcOS & sinzx sinzx

G"(z)+ =G (x) = — — 22— 42— 22— =—
x T T T x T x
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Hence, G solves (7.15) for n = 0.
Now let H(x) := 2~ '(z~!sinz — cosz). Then we obtain

H'(z) = —i? (G(x) — cosz) + = (G'(z) + sinz)
x x
and
H"(z) =2 ig (G(x) —cosz) — 2 iz (G'(z) +sinz) + = (G"(x) + cosz)
x T T
such that

H"(z) + 2 H'(z) = é (G"(x) + cosz)

T

1 . CoS T sin x 1

= — —sinx — 2 +2 3 + — cosx
x x x T

sinx cosx 2 (sinx cosz
2 x 22\ 22 x

7.13 For n = 1, the toroidal frequency equation yjn41(x) = (n — 1)jn(x) becomes the

equation
xJ2(x) = 0. (7.16)
With the formula for 32, this yields
(;—1) sinx—icosxzo. (7.17)
If cos x # 0, then (7.17) is equivalent to
3
tan y = )?QX_ 1
which can also be written as
tan x _ 3 ’ (7.18)
X o 3-x

because x # 0 is clear.
In the remaining case of a positive root x = (2k + 1)7/2, k € Ny, of the cosine
function, the spherical Bessel function would take the value

~ (2k+1 3-4 (—1)k
— -1 -0
”( 2 ”) (<2k+1>2w2 )%;ur

12 2
- < (2k + 1)272 _1> (-1)* (2k + D)

¢Q #0
#0

£0.
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Hence, roots of the cosine function do not solve the frequency equation (7.16) and,
therefore, all solutions must fulfil (7.18).

For solving Equation (7.18) numerically, we write the equation equivalently as

tany =
X 3—

]

20

——tany
—3x/(3-x%)
-2 =3

-90 | | | | * | | | | |
0 1 2 3 4 5 6 7 8 9 10

15

T

10

T

—10

T

—15

e s
. ® o/ e o esale

Figure 7.1 The crossing points of the coloured graphs are solutions of the frequency equa-
tion for n = 2. Note the singularity of the rational term at v/3, which makes clear that
there is no missed crossing point in this area.

Figure 7.1 shows that the smallest positive solution can be expected at approxi-
mately x ~ 6. We, therefore, start a Newton iteration for

3x , 1 9+ 3x?
= t e —— = — .
F(x) = tanx — g— Z = FO) =3 X Boe?

With xg = 6, the iteration

Xk+1 = Xk — f Oxi)
- f(xx)

converges to x = 5.76345919689455 . . .

7.14 We already know that
d

15 (9) (X(5)) = V. S(X(s)) .

In the case of a constant velocity field, the right-hand side must vanish. Hence, with
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the definition of the unit slowness vector p, we get

d
(VL T(X(s)) =0.

In other words, V,T is constant along each ray. However, by definition of the rays,
d 2T (X
4y - DTG
ds [VoT'(X(s))]

is the unit tangential vector along the ray s +— X(s). Therefore, this (arbitrarily
chosen) ray must be a straight line.
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Final comment

Note that the references of the book are also valid as a bibliography regarding exercises.
In particular, some of the problems solved in these exercises here can certainly also be
found together with derivations in other literature such as those publications which are
listed in the references of the book.



